Data
cnae-9_seed_3_nrows_2000_nclasses_10_ncols_100_stratify_True

cnae-9_seed_3_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by Eddie Bergman
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset cnae-9 (1468) with seed=3 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

101 features

Class (target)nominal9 unique values
0 missing
V2numeric2 unique values
0 missing
V4numeric2 unique values
0 missing
V25numeric2 unique values
0 missing
V26numeric2 unique values
0 missing
V31numeric2 unique values
0 missing
V35numeric2 unique values
0 missing
V62numeric2 unique values
0 missing
V65numeric2 unique values
0 missing
V73numeric3 unique values
0 missing
V75numeric3 unique values
0 missing
V88numeric2 unique values
0 missing
V89numeric2 unique values
0 missing
V112numeric2 unique values
0 missing
V124numeric2 unique values
0 missing
V136numeric2 unique values
0 missing
V137numeric2 unique values
0 missing
V139numeric2 unique values
0 missing
V155numeric2 unique values
0 missing
V172numeric2 unique values
0 missing
V180numeric2 unique values
0 missing
V183numeric2 unique values
0 missing
V190numeric2 unique values
0 missing
V198numeric2 unique values
0 missing
V205numeric2 unique values
0 missing
V206numeric2 unique values
0 missing
V208numeric2 unique values
0 missing
V225numeric2 unique values
0 missing
V234numeric2 unique values
0 missing
V240numeric2 unique values
0 missing
V244numeric2 unique values
0 missing
V248numeric2 unique values
0 missing
V253numeric2 unique values
0 missing
V254numeric2 unique values
0 missing
V255numeric2 unique values
0 missing
V277numeric2 unique values
0 missing
V305numeric2 unique values
0 missing
V307numeric2 unique values
0 missing
V325numeric2 unique values
0 missing
V328numeric2 unique values
0 missing
V329numeric2 unique values
0 missing
V333numeric2 unique values
0 missing
V337numeric2 unique values
0 missing
V338numeric3 unique values
0 missing
V352numeric2 unique values
0 missing
V363numeric2 unique values
0 missing
V369numeric2 unique values
0 missing
V382numeric2 unique values
0 missing
V386numeric2 unique values
0 missing
V404numeric2 unique values
0 missing
V405numeric2 unique values
0 missing
V425numeric3 unique values
0 missing
V429numeric2 unique values
0 missing
V445numeric2 unique values
0 missing
V461numeric2 unique values
0 missing
V473numeric2 unique values
0 missing
V478numeric2 unique values
0 missing
V500numeric2 unique values
0 missing
V503numeric2 unique values
0 missing
V507numeric2 unique values
0 missing
V514numeric2 unique values
0 missing
V516numeric2 unique values
0 missing
V522numeric2 unique values
0 missing
V535numeric2 unique values
0 missing
V543numeric2 unique values
0 missing
V546numeric3 unique values
0 missing
V553numeric3 unique values
0 missing
V562numeric2 unique values
0 missing
V569numeric2 unique values
0 missing
V575numeric2 unique values
0 missing
V577numeric2 unique values
0 missing
V580numeric2 unique values
0 missing
V596numeric2 unique values
0 missing
V603numeric2 unique values
0 missing
V611numeric3 unique values
0 missing
V615numeric3 unique values
0 missing
V618numeric4 unique values
0 missing
V621numeric2 unique values
0 missing
V628numeric2 unique values
0 missing
V644numeric2 unique values
0 missing
V664numeric2 unique values
0 missing
V692numeric2 unique values
0 missing
V693numeric2 unique values
0 missing
V696numeric2 unique values
0 missing
V708numeric2 unique values
0 missing
V719numeric2 unique values
0 missing
V726numeric3 unique values
0 missing
V747numeric2 unique values
0 missing
V749numeric2 unique values
0 missing
V754numeric2 unique values
0 missing
V757numeric2 unique values
0 missing
V766numeric2 unique values
0 missing
V768numeric2 unique values
0 missing
V773numeric2 unique values
0 missing
V779numeric2 unique values
0 missing
V795numeric2 unique values
0 missing
V807numeric2 unique values
0 missing
V811numeric2 unique values
0 missing
V819numeric2 unique values
0 missing
V828numeric2 unique values
0 missing
V840numeric2 unique values
0 missing

19 properties

1080
Number of instances (rows) of the dataset.
101
Number of attributes (columns) of the dataset.
9
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
100
Number of numeric attributes.
1
Number of nominal attributes.
120
Number of instances belonging to the most frequent class.
11.11
Percentage of instances belonging to the least frequent class.
120
Number of instances belonging to the least frequent class.
0
Number of binary attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
0
Average class difference between consecutive instances.
99.01
Percentage of numeric attributes.
0.09
Number of attributes divided by the number of instances.
0.99
Percentage of nominal attributes.
11.11
Percentage of instances belonging to the most frequent class.

0 tasks

Define a new task