{ "data_id": "44602", "name": "qsar-biodeg_seed_4_nrows_2000_nclasses_10_ncols_100_stratify_True", "exact_name": "qsar-biodeg_seed_4_nrows_2000_nclasses_10_ncols_100_stratify_True", "version": 1, "version_label": "a1ce649a-d0d6-444a-a7f8-1c78d1a4e81d", "description": "Subsampling of the dataset qsar-biodeg (1494) with\n\nseed=4\nargs.nrows=2000\nargs.ncols=100\nargs.nclasses=10\nargs.no_stratify=True\nGenerated with the following source code:\n\n\n```python\n def subsample(\n self,\n seed: int,\n nrows_max: int = 2_000,\n ncols_max: int = 100,\n nclasses_max: int = 10,\n stratified: bool = True,\n ) -> Dataset:\n rng = np.random.default_rng(seed)\n\n x = self.x\n y = self.y\n\n # Uniformly sample\n classes = y.unique()\n if len(classes) > nclasses_max:\n vcs = y.value_counts()\n selected_classes = rng.choice(\n classes,\n size=nclasses_max,\n replace=False,\n p=vcs \/ sum(vcs),\n )\n\n # Select the indices where one of these classes is present\n idxs = y.index[y.isin(classes)]\n x = x.iloc[idxs]\n y = y.iloc[idxs]\n\n # Uniformly sample columns if required\n if len(x.columns) > ncols_max:\n columns_idxs = rng.choice(\n list(range(len(x.columns))), size=ncols_max, replace=False\n )\n sorted_column_idxs = sorted(columns_idxs)\n selected_columns = list(x.columns[sorted_column_idxs])\n x = x[selected_columns]\n else:\n sorted_column_idxs = list(range(len(x.columns)))\n\n if len(x) > nrows_max:\n # Stratify accordingly\n target_name = y.name\n data = pd.concat((x, y), axis=\"columns\")\n _, subset = train_test_split(\n data,\n test_size=nrows_max,\n stratify=data[target_name],\n shuffle=True,\n random_state=seed,\n )\n x = subset.drop(target_name, axis=\"columns\")\n y = subset[target_name]\n\n # We need to convert categorical columns to string for openml\n categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs]\n columns = list(x.columns)\n\n return Dataset(\n # Technically this is not the same but it's where it was derived from\n dataset=self.dataset,\n x=x,\n y=y,\n categorical_mask=categorical_mask,\n columns=columns,\n )\n```", "format": "arff", "uploader": "Eddie Bergman", "uploader_id": 32840, "visibility": "public", "creator": "\"Eddie Bergman\"", "contributor": null, "date": "2022-11-17 18:36:20", "update_comment": null, "last_update": "2022-11-17 18:36:20", "licence": "Public", "status": "active", "error_message": null, "url": "https:\/\/api.openml.org\/data\/download\/22111364\/dataset", "default_target_attribute": "Class", "row_id_attribute": null, "ignore_attribute": null, "runs": 0, "suggest": { "input": [ "qsar-biodeg_seed_4_nrows_2000_nclasses_10_ncols_100_stratify_True", "Subsampling of the dataset qsar-biodeg (1494) with seed=4 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choic " ], "weight": 5 }, "qualities": { "NumberOfInstances": 1055, "NumberOfFeatures": 42, "NumberOfClasses": 2, "NumberOfMissingValues": 0, "NumberOfInstancesWithMissingValues": 0, "NumberOfNumericFeatures": 41, "NumberOfSymbolicFeatures": 1, "PercentageOfMissingValues": 0, "AutoCorrelation": 0.9971537001897534, "PercentageOfNumericFeatures": 97.61904761904762, "Dimensionality": 0.03981042654028436, "PercentageOfSymbolicFeatures": 2.380952380952381, "MajorityClassPercentage": 66.25592417061611, "MajorityClassSize": 699, "MinorityClassPercentage": 33.74407582938389, "MinorityClassSize": 356, "NumberOfBinaryFeatures": 1, "PercentageOfBinaryFeatures": 2.380952380952381, "PercentageOfInstancesWithMissingValues": 0 }, "tags": [ { "uploader": "38960", "tag": "Machine Learning" }, { "uploader": "38960", "tag": "Mathematics" } ], "features": [ { "name": "Class", "index": "41", "type": "nominal", "distinct": "2", "missing": "0", "target": "1", "distr": [ [ "1", "2" ], [ [ "699", "0" ], [ "0", "356" ] ] ] }, { "name": "V1", "index": "0", "type": "numeric", "distinct": "440", "missing": "0", "min": "2", "max": "6", "mean": "5", "stdev": "1" }, { "name": "V2", "index": "1", "type": "numeric", "distinct": "1022", "missing": "0", "min": "1", "max": "9", "mean": "3", "stdev": "1" }, { "name": "V3", "index": "2", "type": "numeric", "distinct": "11", "missing": "0", "min": "0", "max": "12", "mean": "1", "stdev": "1" }, { "name": "V4", "index": "3", "type": "numeric", "distinct": "4", "missing": "0", "min": "0", "max": "3", "mean": "0", "stdev": "0" }, { "name": "V5", "index": "4", "type": "numeric", "distinct": "16", "missing": "0", "min": "0", "max": "36", "mean": "1", "stdev": "2" }, { "name": "V6", "index": "5", "type": "numeric", "distinct": "13", "missing": "0", "min": "0", "max": "13", "mean": "0", "stdev": "1" }, { "name": "V7", "index": "6", "type": "numeric", "distinct": "15", "missing": "0", "min": "0", "max": "18", "mean": "2", "stdev": "2" }, { "name": "V8", "index": "7", "type": "numeric", "distinct": "188", "missing": "0", "min": "0", "max": "61", "mean": "37", "stdev": "9" }, { "name": "V9", "index": "8", "type": "numeric", "distinct": "15", "missing": "0", "min": "0", "max": "24", "mean": "1", "stdev": "2" }, { "name": "V10", "index": "9", "type": "numeric", "distinct": "12", "missing": "0", "min": "0", "max": "12", "mean": "2", "stdev": "2" }, { "name": "V11", "index": "10", "type": "numeric", "distinct": "21", "missing": "0", "min": "0", "max": "44", "mean": "1", "stdev": "3" }, { "name": "V12", "index": "11", "type": "numeric", "distinct": "384", "missing": "0", "min": "-5", "max": "5", "mean": "0", "stdev": "1" }, { "name": "V13", "index": "12", "type": "numeric", "distinct": "756", "missing": "0", "min": "2", "max": "6", "mean": "3", "stdev": "1" }, { "name": "V14", "index": "13", "type": "numeric", "distinct": "373", "missing": "0", "min": "0", "max": "4", "mean": "1", "stdev": "1" }, { "name": "V15", "index": "14", "type": "numeric", "distinct": "510", "missing": "0", "min": "4", "max": "13", "mean": "10", "stdev": "1" }, { "name": "V16", "index": "15", "type": "numeric", "distinct": "24", "missing": "0", "min": "0", "max": "40", "mean": "4", "stdev": "4" }, { "name": "V17", "index": "16", "type": "numeric", "distinct": "167", "missing": "0", "min": "1", "max": "1", "mean": "1", "stdev": "0" }, { "name": "V18", "index": "17", "type": "numeric", "distinct": "125", "missing": "0", "min": "1", "max": "1", "mean": "1", "stdev": "0" }, { "name": "V19", "index": "18", "type": "numeric", "distinct": "3", "missing": "0", "min": "0", "max": "2", "mean": "0", "stdev": "0" }, { "name": "V20", "index": "19", "type": "numeric", "distinct": "4", "missing": "0", "min": "0", "max": "3", "mean": "0", "stdev": "0" }, { "name": "V21", "index": "20", "type": "numeric", "distinct": "4", "missing": "0", "min": "0", "max": "3", "mean": "0", "stdev": "0" }, { "name": "V22", "index": "21", "type": "numeric", "distinct": "352", "missing": "0", "min": "1", "max": "2", "mean": "1", "stdev": "0" }, { "name": "V23", "index": "22", "type": "numeric", "distinct": "13", "missing": "0", "min": "0", "max": "147", "mean": "1", "stdev": "5" }, { "name": "V24", "index": "23", "type": "numeric", "distinct": "2", "missing": "0", "min": "0", "max": "1", "mean": "0", "stdev": "0" }, { "name": "V25", "index": "24", "type": "numeric", "distinct": "2", "missing": "0", "min": "0", "max": "1", "mean": "0", "stdev": "0" }, { "name": "V26", "index": "25", "type": "numeric", "distinct": "4", "missing": "0", "min": "0", "max": "3", "mean": "0", "stdev": "0" }, { "name": "V27", "index": "26", "type": "numeric", "distinct": "329", "missing": "0", "min": "1", "max": "3", "mean": "2", "stdev": "0" }, { "name": "V28", "index": "27", "type": "numeric", "distinct": "205", "missing": "0", "min": "-1", "max": "1", "mean": "0", "stdev": "0" }, { "name": "V29", "index": "28", "type": "numeric", "distinct": "2", "missing": "0", "min": "0", "max": "1", "mean": "0", "stdev": "0" }, { "name": "V30", "index": "29", "type": "numeric", "distinct": "470", "missing": "0", "min": "0", "max": "71", "mean": "9", "stdev": "12" }, { "name": "V31", "index": "30", "type": "numeric", "distinct": "553", "missing": "0", "min": "0", "max": "18", "mean": "3", "stdev": "2" }, { "name": "V32", "index": "31", "type": "numeric", "distinct": "8", "missing": "0", "min": "0", "max": "8", "mean": "0", "stdev": "1" }, { "name": "V33", "index": "32", "type": "numeric", "distinct": "11", "missing": "0", "min": "0", "max": "12", "mean": "1", "stdev": "2" }, { "name": "V34", "index": "33", "type": "numeric", "distinct": "16", "missing": "0", "min": "0", "max": "18", "mean": "1", "stdev": "2" }, { "name": "V35", "index": "34", "type": "numeric", "distinct": "8", "missing": "0", "min": "0", "max": "7", "mean": "1", "stdev": "1" }, { "name": "V36", "index": "35", "type": "numeric", "distinct": "705", "missing": "0", "min": "2", "max": "11", "mean": "4", "stdev": "1" }, { "name": "V37", "index": "36", "type": "numeric", "distinct": "624", "missing": "0", "min": "1", "max": "6", "mean": "3", "stdev": "1" }, { "name": "V38", "index": "37", "type": "numeric", "distinct": "8", "missing": "0", "min": "0", "max": "8", "mean": "1", "stdev": "1" }, { "name": "V39", "index": "38", "type": "numeric", "distinct": "862", "missing": "0", "min": "5", "max": "15", "mean": "9", "stdev": "1" }, { "name": "V40", "index": "39", "type": "numeric", "distinct": "5", "missing": "0", "min": "0", "max": "4", "mean": "0", "stdev": "0" }, { "name": "V41", "index": "40", "type": "numeric", "distinct": "17", "missing": "0", "min": "0", "max": "27", "mean": "1", "stdev": "2" } ], "nr_of_issues": 0, "nr_of_downvotes": 0, "nr_of_likes": 0, "nr_of_downloads": 0, "total_downloads": 0, "reach": 0, "reuse": 0, "impact_of_reuse": 0, "reach_of_reuse": 0, "impact": 0 }