{ "data_id": "44594", "name": "blood-transfusion-service-center_seed_1_nrows_2000_nclasses_10_ncols_100_stratify_True", "exact_name": "blood-transfusion-service-center_seed_1_nrows_2000_nclasses_10_ncols_100_stratify_True", "version": 1, "version_label": "88f5bc9f-b840-4816-bf42-dd1f994fae26", "description": "Subsampling of the dataset blood-transfusion-service-center (1464) with\n\nseed=1\nargs.nrows=2000\nargs.ncols=100\nargs.nclasses=10\nargs.no_stratify=True\nGenerated with the following source code:\n\n\n```python\n def subsample(\n self,\n seed: int,\n nrows_max: int = 2_000,\n ncols_max: int = 100,\n nclasses_max: int = 10,\n stratified: bool = True,\n ) -> Dataset:\n rng = np.random.default_rng(seed)\n\n x = self.x\n y = self.y\n\n # Uniformly sample\n classes = y.unique()\n if len(classes) > nclasses_max:\n vcs = y.value_counts()\n selected_classes = rng.choice(\n classes,\n size=nclasses_max,\n replace=False,\n p=vcs \/ sum(vcs),\n )\n\n # Select the indices where one of these classes is present\n idxs = y.index[y.isin(classes)]\n x = x.iloc[idxs]\n y = y.iloc[idxs]\n\n # Uniformly sample columns if required\n if len(x.columns) > ncols_max:\n columns_idxs = rng.choice(\n list(range(len(x.columns))), size=ncols_max, replace=False\n )\n sorted_column_idxs = sorted(columns_idxs)\n selected_columns = list(x.columns[sorted_column_idxs])\n x = x[selected_columns]\n else:\n sorted_column_idxs = list(range(len(x.columns)))\n\n if len(x) > nrows_max:\n # Stratify accordingly\n target_name = y.name\n data = pd.concat((x, y), axis=\"columns\")\n _, subset = train_test_split(\n data,\n test_size=nrows_max,\n stratify=data[target_name],\n shuffle=True,\n random_state=seed,\n )\n x = subset.drop(target_name, axis=\"columns\")\n y = subset[target_name]\n\n # We need to convert categorical columns to string for openml\n categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs]\n columns = list(x.columns)\n\n return Dataset(\n # Technically this is not the same but it's where it was derived from\n dataset=self.dataset,\n x=x,\n y=y,\n categorical_mask=categorical_mask,\n columns=columns,\n )\n```", "format": "arff", "uploader": "Eddie Bergman", "uploader_id": 32840, "visibility": "public", "creator": "\"Eddie Bergman\"", "contributor": null, "date": "2022-11-17 18:35:43", "update_comment": null, "last_update": "2022-11-17 18:35:43", "licence": "Public", "status": "active", "error_message": null, "url": "https:\/\/api.openml.org\/data\/download\/22111356\/dataset", "default_target_attribute": "Class", "row_id_attribute": null, "ignore_attribute": null, "runs": 0, "suggest": { "input": [ "blood-transfusion-service-center_seed_1_nrows_2000_nclasses_10_ncols_100_stratify_True", "Subsampling of the dataset blood-transfusion-service-center (1464) with seed=1 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selecte " ], "weight": 5 }, "qualities": { "NumberOfInstances": 748, "NumberOfFeatures": 5, "NumberOfClasses": 2, "NumberOfMissingValues": 0, "NumberOfInstancesWithMissingValues": 0, "NumberOfNumericFeatures": 4, "NumberOfSymbolicFeatures": 1, "PercentageOfInstancesWithMissingValues": 0, "AutoCorrelation": 0.7309236947791165, "PercentageOfMissingValues": 0, "Dimensionality": 0.0066844919786096255, "PercentageOfNumericFeatures": 80, "MajorityClassPercentage": 76.20320855614973, "PercentageOfSymbolicFeatures": 20, "MajorityClassSize": 570, "MinorityClassPercentage": 23.796791443850267, "MinorityClassSize": 178, "NumberOfBinaryFeatures": 1, "PercentageOfBinaryFeatures": 20 }, "tags": [ { "uploader": "38960", "tag": "Statistics" } ], "features": [ { "name": "Class", "index": "4", "type": "nominal", "distinct": "2", "missing": "0", "target": "1", "distr": [ [ "1", "2" ], [ [ "570", "0" ], [ "0", "178" ] ] ] }, { "name": "V1", "index": "0", "type": "numeric", "distinct": "31", "missing": "0", "min": "0", "max": "74", "mean": "10", "stdev": "8" }, { "name": "V2", "index": "1", "type": "numeric", "distinct": "33", "missing": "0", "min": "1", "max": "50", "mean": "6", "stdev": "6" }, { "name": "V3", "index": "2", "type": "numeric", "distinct": "33", "missing": "0", "min": "250", "max": "12500", "mean": "1379", "stdev": "1460" }, { "name": "V4", "index": "3", "type": "numeric", "distinct": "78", "missing": "0", "min": "2", "max": "98", "mean": "34", "stdev": "24" } ], "nr_of_issues": 0, "nr_of_downvotes": 0, "nr_of_likes": 0, "nr_of_downloads": 0, "total_downloads": 0, "reach": 0, "reuse": 0, "impact_of_reuse": 0, "reach_of_reuse": 0, "impact": 0 }