Data
ozone-level-8hr_seed_2_nrows_2000_nclasses_10_ncols_100_stratify_True

ozone-level-8hr_seed_2_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by Eddie Bergman
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset ozone-level-8hr (1487) with seed=2 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

73 features

Class (target)nominal2 unique values
0 missing
V1numeric69 unique values
0 missing
V2numeric68 unique values
0 missing
V3numeric65 unique values
0 missing
V4numeric65 unique values
0 missing
V5numeric63 unique values
0 missing
V6numeric62 unique values
0 missing
V7numeric63 unique values
0 missing
V8numeric65 unique values
0 missing
V9numeric69 unique values
0 missing
V10numeric71 unique values
0 missing
V11numeric75 unique values
0 missing
V12numeric76 unique values
0 missing
V13numeric76 unique values
0 missing
V14numeric77 unique values
0 missing
V15numeric75 unique values
0 missing
V16numeric76 unique values
0 missing
V17numeric71 unique values
0 missing
V18numeric71 unique values
0 missing
V19numeric68 unique values
0 missing
V20numeric65 unique values
0 missing
V21numeric69 unique values
0 missing
V22numeric70 unique values
0 missing
V23numeric68 unique values
0 missing
V24numeric66 unique values
0 missing
V25numeric72 unique values
0 missing
V26numeric54 unique values
0 missing
V27numeric279 unique values
0 missing
V28numeric279 unique values
0 missing
V29numeric281 unique values
0 missing
V30numeric281 unique values
0 missing
V31numeric276 unique values
0 missing
V32numeric286 unique values
0 missing
V33numeric292 unique values
0 missing
V34numeric308 unique values
0 missing
V35numeric311 unique values
0 missing
V36numeric309 unique values
0 missing
V37numeric322 unique values
0 missing
V38numeric317 unique values
0 missing
V39numeric319 unique values
0 missing
V40numeric322 unique values
0 missing
V41numeric324 unique values
0 missing
V42numeric329 unique values
0 missing
V43numeric325 unique values
0 missing
V44numeric321 unique values
0 missing
V45numeric307 unique values
0 missing
V46numeric296 unique values
0 missing
V47numeric290 unique values
0 missing
V48numeric282 unique values
0 missing
V49numeric282 unique values
0 missing
V50numeric276 unique values
0 missing
V51numeric314 unique values
0 missing
V52numeric289 unique values
0 missing
V53numeric243 unique values
0 missing
V54numeric101 unique values
0 missing
V55numeric1136 unique values
0 missing
V56numeric1278 unique values
0 missing
V57numeric342 unique values
0 missing
V58numeric233 unique values
0 missing
V59numeric101 unique values
0 missing
V60numeric1316 unique values
0 missing
V61numeric1242 unique values
0 missing
V62numeric425 unique values
0 missing
V63numeric184 unique values
0 missing
V64numeric101 unique values
0 missing
V65numeric1394 unique values
0 missing
V66numeric1294 unique values
0 missing
V67numeric84 unique values
0 missing
V68numeric942 unique values
0 missing
V69numeric619 unique values
0 missing
V70numeric70 unique values
0 missing
V71numeric55 unique values
0 missing
V72numeric159 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
73
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
72
Number of numeric attributes.
1
Number of nominal attributes.
1.37
Percentage of binary attributes.
0
Percentage of instances having missing values.
0.88
Average class difference between consecutive instances.
0
Percentage of missing values.
0.04
Number of attributes divided by the number of instances.
98.63
Percentage of numeric attributes.
93.7
Percentage of instances belonging to the most frequent class.
1.37
Percentage of nominal attributes.
1874
Number of instances belonging to the most frequent class.
6.3
Percentage of instances belonging to the least frequent class.
126
Number of instances belonging to the least frequent class.
1
Number of binary attributes.

0 tasks

Define a new task