Data
ozone-level-8hr_seed_1_nrows_2000_nclasses_10_ncols_100_stratify_True

ozone-level-8hr_seed_1_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by Eddie Bergman
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset ozone-level-8hr (1487) with seed=1 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

73 features

Class (target)nominal2 unique values
0 missing
V1numeric66 unique values
0 missing
V2numeric67 unique values
0 missing
V3numeric65 unique values
0 missing
V4numeric65 unique values
0 missing
V5numeric64 unique values
0 missing
V6numeric63 unique values
0 missing
V7numeric65 unique values
0 missing
V8numeric67 unique values
0 missing
V9numeric68 unique values
0 missing
V10numeric70 unique values
0 missing
V11numeric74 unique values
0 missing
V12numeric76 unique values
0 missing
V13numeric77 unique values
0 missing
V14numeric78 unique values
0 missing
V15numeric78 unique values
0 missing
V16numeric76 unique values
0 missing
V17numeric69 unique values
0 missing
V18numeric72 unique values
0 missing
V19numeric67 unique values
0 missing
V20numeric65 unique values
0 missing
V21numeric68 unique values
0 missing
V22numeric69 unique values
0 missing
V23numeric68 unique values
0 missing
V24numeric66 unique values
0 missing
V25numeric74 unique values
0 missing
V26numeric56 unique values
0 missing
V27numeric279 unique values
0 missing
V28numeric277 unique values
0 missing
V29numeric283 unique values
0 missing
V30numeric279 unique values
0 missing
V31numeric281 unique values
0 missing
V32numeric285 unique values
0 missing
V33numeric291 unique values
0 missing
V34numeric305 unique values
0 missing
V35numeric308 unique values
0 missing
V36numeric308 unique values
0 missing
V37numeric318 unique values
0 missing
V38numeric326 unique values
0 missing
V39numeric325 unique values
0 missing
V40numeric323 unique values
0 missing
V41numeric324 unique values
0 missing
V42numeric330 unique values
0 missing
V43numeric325 unique values
0 missing
V44numeric318 unique values
0 missing
V45numeric308 unique values
0 missing
V46numeric299 unique values
0 missing
V47numeric290 unique values
0 missing
V48numeric290 unique values
0 missing
V49numeric282 unique values
0 missing
V50numeric278 unique values
0 missing
V51numeric321 unique values
0 missing
V52numeric291 unique values
0 missing
V53numeric245 unique values
0 missing
V54numeric101 unique values
0 missing
V55numeric1146 unique values
0 missing
V56numeric1262 unique values
0 missing
V57numeric349 unique values
0 missing
V58numeric240 unique values
0 missing
V59numeric101 unique values
0 missing
V60numeric1320 unique values
0 missing
V61numeric1225 unique values
0 missing
V62numeric421 unique values
0 missing
V63numeric183 unique values
0 missing
V64numeric101 unique values
0 missing
V65numeric1426 unique values
0 missing
V66numeric1280 unique values
0 missing
V67numeric84 unique values
0 missing
V68numeric954 unique values
0 missing
V69numeric614 unique values
0 missing
V70numeric71 unique values
0 missing
V71numeric57 unique values
0 missing
V72numeric157 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
73
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
72
Number of numeric attributes.
1
Number of nominal attributes.
126
Number of instances belonging to the least frequent class.
1
Number of binary attributes.
1.37
Percentage of binary attributes.
0
Percentage of instances having missing values.
0.89
Average class difference between consecutive instances.
0
Percentage of missing values.
0.04
Number of attributes divided by the number of instances.
98.63
Percentage of numeric attributes.
93.7
Percentage of instances belonging to the most frequent class.
1.37
Percentage of nominal attributes.
1874
Number of instances belonging to the most frequent class.
6.3
Percentage of instances belonging to the least frequent class.

0 tasks

Define a new task