Data
gina_seed_3_nrows_2000_nclasses_10_ncols_100_stratify_True

gina_seed_3_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by Eddie Bergman
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset gina (41158) with seed=3 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

101 features

class (target)nominal2 unique values
0 missing
V2numeric166 unique values
0 missing
V5numeric74 unique values
0 missing
V29numeric47 unique values
0 missing
V30numeric218 unique values
0 missing
V35numeric63 unique values
0 missing
V40numeric208 unique values
0 missing
V71numeric150 unique values
0 missing
V75numeric232 unique values
0 missing
V83numeric121 unique values
0 missing
V85numeric31 unique values
0 missing
V99numeric199 unique values
0 missing
V102numeric231 unique values
0 missing
V128numeric196 unique values
0 missing
V142numeric224 unique values
0 missing
V156numeric235 unique values
0 missing
V157numeric223 unique values
0 missing
V159numeric235 unique values
0 missing
V177numeric32 unique values
0 missing
V195numeric229 unique values
0 missing
V207numeric137 unique values
0 missing
V208numeric82 unique values
0 missing
V216numeric226 unique values
0 missing
V226numeric114 unique values
0 missing
V234numeric218 unique values
0 missing
V235numeric52 unique values
0 missing
V237numeric231 unique values
0 missing
V257numeric235 unique values
0 missing
V267numeric232 unique values
0 missing
V274numeric36 unique values
0 missing
V278numeric239 unique values
0 missing
V282numeric213 unique values
0 missing
V289numeric148 unique values
0 missing
V290numeric225 unique values
0 missing
V293numeric209 unique values
0 missing
V314numeric230 unique values
0 missing
V349numeric191 unique values
0 missing
V369numeric38 unique values
0 missing
V372numeric105 unique values
0 missing
V377numeric237 unique values
0 missing
V383numeric239 unique values
0 missing
V386numeric81 unique values
0 missing
V403numeric222 unique values
0 missing
V412numeric86 unique values
0 missing
V424numeric234 unique values
0 missing
V436numeric220 unique values
0 missing
V440numeric235 unique values
0 missing
V461numeric107 unique values
0 missing
V462numeric198 unique values
0 missing
V484numeric87 unique values
0 missing
V488numeric154 unique values
0 missing
V512numeric101 unique values
0 missing
V527numeric231 unique values
0 missing
V540numeric227 unique values
0 missing
V549numeric217 unique values
0 missing
V570numeric32 unique values
0 missing
V573numeric241 unique values
0 missing
V574numeric203 unique values
0 missing
V588numeric207 unique values
0 missing
V590numeric233 unique values
0 missing
V594numeric230 unique values
0 missing
V598numeric234 unique values
0 missing
V611numeric228 unique values
0 missing
V614numeric149 unique values
0 missing
V619numeric55 unique values
0 missing
V621numeric127 unique values
0 missing
V628numeric221 unique values
0 missing
V633numeric233 unique values
0 missing
V637numeric226 unique values
0 missing
V653numeric151 unique values
0 missing
V658numeric192 unique values
0 missing
V665numeric62 unique values
0 missing
V682numeric233 unique values
0 missing
V685numeric238 unique values
0 missing
V702numeric236 unique values
0 missing
V707numeric219 unique values
0 missing
V710numeric62 unique values
0 missing
V717numeric186 unique values
0 missing
V730numeric74 unique values
0 missing
V763numeric187 unique values
0 missing
V786numeric220 unique values
0 missing
V791numeric171 unique values
0 missing
V793numeric201 unique values
0 missing
V804numeric102 unique values
0 missing
V821numeric226 unique values
0 missing
V823numeric225 unique values
0 missing
V847numeric64 unique values
0 missing
V856numeric223 unique values
0 missing
V863numeric76 unique values
0 missing
V864numeric30 unique values
0 missing
V872numeric233 unique values
0 missing
V874numeric28 unique values
0 missing
V877numeric236 unique values
0 missing
V890numeric232 unique values
0 missing
V920numeric67 unique values
0 missing
V932numeric102 unique values
0 missing
V933numeric147 unique values
0 missing
V946numeric239 unique values
0 missing
V952numeric109 unique values
0 missing
V956numeric230 unique values
0 missing
V970numeric152 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
101
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
100
Number of numeric attributes.
1
Number of nominal attributes.
0.99
Percentage of binary attributes.
0
Percentage of instances having missing values.
0.48
Average class difference between consecutive instances.
0
Percentage of missing values.
0.05
Number of attributes divided by the number of instances.
99.01
Percentage of numeric attributes.
50.85
Percentage of instances belonging to the most frequent class.
0.99
Percentage of nominal attributes.
1017
Number of instances belonging to the most frequent class.
49.15
Percentage of instances belonging to the least frequent class.
983
Number of instances belonging to the least frequent class.
1
Number of binary attributes.

0 tasks

Define a new task