Data
gina_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True

gina_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by Eddie Bergman
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset gina (41158) with seed=0 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

101 features

class (target)nominal2 unique values
0 missing
V3numeric191 unique values
0 missing
V5numeric73 unique values
0 missing
V8numeric78 unique values
0 missing
V15numeric237 unique values
0 missing
V21numeric189 unique values
0 missing
V26numeric234 unique values
0 missing
V31numeric217 unique values
0 missing
V36numeric97 unique values
0 missing
V47numeric233 unique values
0 missing
V66numeric235 unique values
0 missing
V70numeric239 unique values
0 missing
V73numeric228 unique values
0 missing
V81numeric229 unique values
0 missing
V82numeric225 unique values
0 missing
V114numeric216 unique values
0 missing
V127numeric237 unique values
0 missing
V155numeric211 unique values
0 missing
V159numeric228 unique values
0 missing
V219numeric236 unique values
0 missing
V236numeric51 unique values
0 missing
V237numeric228 unique values
0 missing
V243numeric217 unique values
0 missing
V248numeric231 unique values
0 missing
V255numeric219 unique values
0 missing
V270numeric141 unique values
0 missing
V273numeric102 unique values
0 missing
V293numeric214 unique values
0 missing
V308numeric230 unique values
0 missing
V316numeric238 unique values
0 missing
V324numeric98 unique values
0 missing
V340numeric179 unique values
0 missing
V352numeric65 unique values
0 missing
V353numeric198 unique values
0 missing
V354numeric183 unique values
0 missing
V364numeric168 unique values
0 missing
V366numeric216 unique values
0 missing
V368numeric231 unique values
0 missing
V376numeric150 unique values
0 missing
V385numeric236 unique values
0 missing
V399numeric239 unique values
0 missing
V426numeric222 unique values
0 missing
V438numeric218 unique values
0 missing
V445numeric172 unique values
0 missing
V447numeric33 unique values
0 missing
V459numeric20 unique values
0 missing
V482numeric202 unique values
0 missing
V483numeric230 unique values
0 missing
V491numeric39 unique values
0 missing
V494numeric221 unique values
0 missing
V498numeric232 unique values
0 missing
V505numeric101 unique values
0 missing
V537numeric163 unique values
0 missing
V543numeric227 unique values
0 missing
V545numeric171 unique values
0 missing
V556numeric226 unique values
0 missing
V561numeric241 unique values
0 missing
V567numeric238 unique values
0 missing
V569numeric22 unique values
0 missing
V573numeric240 unique values
0 missing
V595numeric71 unique values
0 missing
V600numeric160 unique values
0 missing
V602numeric116 unique values
0 missing
V605numeric230 unique values
0 missing
V615numeric123 unique values
0 missing
V637numeric234 unique values
0 missing
V640numeric239 unique values
0 missing
V642numeric72 unique values
0 missing
V647numeric132 unique values
0 missing
V657numeric127 unique values
0 missing
V677numeric216 unique values
0 missing
V680numeric34 unique values
0 missing
V688numeric73 unique values
0 missing
V690numeric64 unique values
0 missing
V704numeric39 unique values
0 missing
V716numeric210 unique values
0 missing
V728numeric88 unique values
0 missing
V730numeric63 unique values
0 missing
V741numeric101 unique values
0 missing
V745numeric238 unique values
0 missing
V763numeric189 unique values
0 missing
V769numeric237 unique values
0 missing
V781numeric157 unique values
0 missing
V783numeric241 unique values
0 missing
V794numeric227 unique values
0 missing
V806numeric94 unique values
0 missing
V808numeric235 unique values
0 missing
V819numeric48 unique values
0 missing
V833numeric235 unique values
0 missing
V842numeric187 unique values
0 missing
V857numeric225 unique values
0 missing
V860numeric205 unique values
0 missing
V883numeric141 unique values
0 missing
V886numeric224 unique values
0 missing
V897numeric187 unique values
0 missing
V909numeric234 unique values
0 missing
V922numeric231 unique values
0 missing
V933numeric141 unique values
0 missing
V941numeric219 unique values
0 missing
V955numeric60 unique values
0 missing
V957numeric242 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
101
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
100
Number of numeric attributes.
1
Number of nominal attributes.
0.99
Percentage of binary attributes.
0
Percentage of instances having missing values.
0.5
Average class difference between consecutive instances.
0
Percentage of missing values.
0.05
Number of attributes divided by the number of instances.
99.01
Percentage of numeric attributes.
50.85
Percentage of instances belonging to the most frequent class.
0.99
Percentage of nominal attributes.
1017
Number of instances belonging to the most frequent class.
49.15
Percentage of instances belonging to the least frequent class.
983
Number of instances belonging to the least frequent class.
1
Number of binary attributes.

0 tasks

Define a new task