Data
dionis_seed_4_nrows_2000_nclasses_10_ncols_100_stratify_True

dionis_seed_4_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by Eddie Bergman
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset dionis (41167) with seed=4 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

61 features

class (target)nominal355 unique values
0 missing
V1numeric1518 unique values
0 missing
V2numeric1626 unique values
0 missing
V3numeric20 unique values
0 missing
V4numeric1803 unique values
0 missing
V5numeric1166 unique values
0 missing
V6numeric20 unique values
0 missing
V7numeric1335 unique values
0 missing
V8numeric1849 unique values
0 missing
V9numeric1251 unique values
0 missing
V10numeric741 unique values
0 missing
V11numeric1639 unique values
0 missing
V12numeric1574 unique values
0 missing
V13numeric1779 unique values
0 missing
V14numeric1 unique values
0 missing
V15numeric1838 unique values
0 missing
V16numeric1442 unique values
0 missing
V17numeric1594 unique values
0 missing
V18numeric1500 unique values
0 missing
V19numeric1617 unique values
0 missing
V20numeric1068 unique values
0 missing
V21numeric968 unique values
0 missing
V22numeric980 unique values
0 missing
V23numeric1833 unique values
0 missing
V24numeric1523 unique values
0 missing
V25numeric638 unique values
0 missing
V26numeric901 unique values
0 missing
V27numeric1 unique values
0 missing
V28numeric1744 unique values
0 missing
V29numeric1621 unique values
0 missing
V30numeric1632 unique values
0 missing
V31numeric1492 unique values
0 missing
V32numeric1268 unique values
0 missing
V33numeric1 unique values
0 missing
V34numeric1657 unique values
0 missing
V35numeric1 unique values
0 missing
V36numeric1518 unique values
0 missing
V37numeric1 unique values
0 missing
V38numeric1741 unique values
0 missing
V39numeric1477 unique values
0 missing
V40numeric1496 unique values
0 missing
V41numeric1804 unique values
0 missing
V42numeric1792 unique values
0 missing
V43numeric1620 unique values
0 missing
V44numeric1258 unique values
0 missing
V45numeric819 unique values
0 missing
V46numeric1730 unique values
0 missing
V47numeric786 unique values
0 missing
V48numeric1821 unique values
0 missing
V49numeric734 unique values
0 missing
V50numeric1858 unique values
0 missing
V51numeric1467 unique values
0 missing
V52numeric1295 unique values
0 missing
V53numeric13 unique values
0 missing
V54numeric1 unique values
0 missing
V55numeric1506 unique values
0 missing
V56numeric1775 unique values
0 missing
V57numeric1701 unique values
0 missing
V58numeric1329 unique values
0 missing
V59numeric1356 unique values
0 missing
V60numeric667 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
61
Number of attributes (columns) of the dataset.
355
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
60
Number of numeric attributes.
1
Number of nominal attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
0
Average class difference between consecutive instances.
98.36
Percentage of numeric attributes.
0.03
Number of attributes divided by the number of instances.
1.64
Percentage of nominal attributes.
0.6
Percentage of instances belonging to the most frequent class.
12
Number of instances belonging to the most frequent class.
0.2
Percentage of instances belonging to the least frequent class.
4
Number of instances belonging to the least frequent class.
0
Number of binary attributes.

0 tasks

Define a new task