Data
dionis_seed_1_nrows_2000_nclasses_10_ncols_100_stratify_True

dionis_seed_1_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by Eddie Bergman
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset dionis (41167) with seed=1 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

61 features

class (target)nominal355 unique values
0 missing
V1numeric1507 unique values
0 missing
V2numeric1633 unique values
0 missing
V3numeric16 unique values
0 missing
V4numeric1827 unique values
0 missing
V5numeric1141 unique values
0 missing
V6numeric15 unique values
0 missing
V7numeric1326 unique values
0 missing
V8numeric1868 unique values
0 missing
V9numeric1265 unique values
0 missing
V10numeric770 unique values
0 missing
V11numeric1660 unique values
0 missing
V12numeric1542 unique values
0 missing
V13numeric1779 unique values
0 missing
V14numeric1 unique values
0 missing
V15numeric1849 unique values
0 missing
V16numeric1472 unique values
0 missing
V17numeric1608 unique values
0 missing
V18numeric1561 unique values
0 missing
V19numeric1639 unique values
0 missing
V20numeric1072 unique values
0 missing
V21numeric973 unique values
0 missing
V22numeric967 unique values
0 missing
V23numeric1854 unique values
0 missing
V24numeric1545 unique values
0 missing
V25numeric631 unique values
0 missing
V26numeric875 unique values
0 missing
V27numeric1 unique values
0 missing
V28numeric1717 unique values
0 missing
V29numeric1622 unique values
0 missing
V30numeric1669 unique values
0 missing
V31numeric1462 unique values
0 missing
V32numeric1273 unique values
0 missing
V33numeric1 unique values
0 missing
V34numeric1606 unique values
0 missing
V35numeric1 unique values
0 missing
V36numeric1507 unique values
0 missing
V37numeric1 unique values
0 missing
V38numeric1732 unique values
0 missing
V39numeric1452 unique values
0 missing
V40numeric1509 unique values
0 missing
V41numeric1789 unique values
0 missing
V42numeric1811 unique values
0 missing
V43numeric1625 unique values
0 missing
V44numeric1226 unique values
0 missing
V45numeric814 unique values
0 missing
V46numeric1728 unique values
0 missing
V47numeric795 unique values
0 missing
V48numeric1806 unique values
0 missing
V49numeric709 unique values
0 missing
V50numeric1853 unique values
0 missing
V51numeric1459 unique values
0 missing
V52numeric1280 unique values
0 missing
V53numeric15 unique values
0 missing
V54numeric1 unique values
0 missing
V55numeric1537 unique values
0 missing
V56numeric1736 unique values
0 missing
V57numeric1698 unique values
0 missing
V58numeric1333 unique values
0 missing
V59numeric1365 unique values
0 missing
V60numeric651 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
61
Number of attributes (columns) of the dataset.
355
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
60
Number of numeric attributes.
1
Number of nominal attributes.
12
Number of instances belonging to the most frequent class.
0.2
Percentage of instances belonging to the least frequent class.
4
Number of instances belonging to the least frequent class.
0
Number of binary attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Average class difference between consecutive instances.
0
Percentage of missing values.
0.03
Number of attributes divided by the number of instances.
98.36
Percentage of numeric attributes.
0.6
Percentage of instances belonging to the most frequent class.
1.64
Percentage of nominal attributes.

0 tasks

Define a new task