Data
dilbert_seed_3_nrows_2000_nclasses_10_ncols_100_stratify_True

dilbert_seed_3_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by Eddie Bergman
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset dilbert (41163) with seed=3 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

101 features

class (target)nominal5 unique values
0 missing
V3numeric1993 unique values
0 missing
V10numeric1996 unique values
0 missing
V60numeric1997 unique values
0 missing
V63numeric1994 unique values
0 missing
V76numeric1997 unique values
0 missing
V85numeric1998 unique values
0 missing
V150numeric1994 unique values
0 missing
V163numeric1999 unique values
0 missing
V179numeric1993 unique values
0 missing
V180numeric1996 unique values
0 missing
V205numeric1996 unique values
0 missing
V219numeric1998 unique values
0 missing
V272numeric1998 unique values
0 missing
V307numeric1997 unique values
0 missing
V334numeric1998 unique values
0 missing
V342numeric1998 unique values
0 missing
V346numeric1999 unique values
0 missing
V373numeric1997 unique values
0 missing
V409numeric1999 unique values
0 missing
V434numeric1999 unique values
0 missing
V448numeric1997 unique values
0 missing
V451numeric1997 unique values
0 missing
V478numeric1995 unique values
0 missing
V490numeric1998 unique values
0 missing
V498numeric1999 unique values
0 missing
V499numeric1998 unique values
0 missing
V508numeric1998 unique values
0 missing
V550numeric1998 unique values
0 missing
V568numeric1995 unique values
0 missing
V579numeric2000 unique values
0 missing
V581numeric1995 unique values
0 missing
V589numeric1999 unique values
0 missing
V612numeric1999 unique values
0 missing
V620numeric1995 unique values
0 missing
V635numeric1997 unique values
0 missing
V649numeric1997 unique values
0 missing
V735numeric1997 unique values
0 missing
V752numeric1998 unique values
0 missing
V768numeric1999 unique values
0 missing
V769numeric1996 unique values
0 missing
V788numeric1999 unique values
0 missing
V809numeric1997 unique values
0 missing
V829numeric1999 unique values
0 missing
V830numeric1999 unique values
0 missing
V853numeric1994 unique values
0 missing
V869numeric1989 unique values
0 missing
V917numeric1995 unique values
0 missing
V921numeric1998 unique values
0 missing
V929numeric1991 unique values
0 missing
V963numeric1996 unique values
0 missing
V995numeric1990 unique values
0 missing
V1020numeric1995 unique values
0 missing
V1024numeric1997 unique values
0 missing
V1111numeric1995 unique values
0 missing
V1132numeric1991 unique values
0 missing
V1143numeric1995 unique values
0 missing
V1186numeric1994 unique values
0 missing
V1189numeric1996 unique values
0 missing
V1196numeric1998 unique values
0 missing
V1199numeric1998 unique values
0 missing
V1243numeric1996 unique values
0 missing
V1256numeric1997 unique values
0 missing
V1260numeric1998 unique values
0 missing
V1285numeric1997 unique values
0 missing
V1293numeric1994 unique values
0 missing
V1294numeric1993 unique values
0 missing
V1299numeric1995 unique values
0 missing
V1305numeric1992 unique values
0 missing
V1313numeric1999 unique values
0 missing
V1326numeric1998 unique values
0 missing
V1350numeric1993 unique values
0 missing
V1357numeric1997 unique values
0 missing
V1386numeric1997 unique values
0 missing
V1409numeric1996 unique values
0 missing
V1425numeric1995 unique values
0 missing
V1429numeric1997 unique values
0 missing
V1462numeric2000 unique values
0 missing
V1466numeric2000 unique values
0 missing
V1512numeric1998 unique values
0 missing
V1513numeric1997 unique values
0 missing
V1520numeric1997 unique values
0 missing
V1528numeric1996 unique values
0 missing
V1543numeric1990 unique values
0 missing
V1631numeric1996 unique values
0 missing
V1645numeric1994 unique values
0 missing
V1658numeric1990 unique values
0 missing
V1672numeric1988 unique values
0 missing
V1686numeric1998 unique values
0 missing
V1698numeric1988 unique values
0 missing
V1708numeric1994 unique values
0 missing
V1739numeric1999 unique values
0 missing
V1752numeric1990 unique values
0 missing
V1818numeric1992 unique values
0 missing
V1823numeric1996 unique values
0 missing
V1828numeric1997 unique values
0 missing
V1834numeric1997 unique values
0 missing
V1836numeric1994 unique values
0 missing
V1848numeric1999 unique values
0 missing
V1893numeric1998 unique values
0 missing
V1906numeric1999 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
101
Number of attributes (columns) of the dataset.
5
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
100
Number of numeric attributes.
1
Number of nominal attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0.19
Average class difference between consecutive instances.
0
Percentage of missing values.
0.05
Number of attributes divided by the number of instances.
99.01
Percentage of numeric attributes.
20.5
Percentage of instances belonging to the most frequent class.
0.99
Percentage of nominal attributes.
410
Number of instances belonging to the most frequent class.
19.1
Percentage of instances belonging to the least frequent class.
382
Number of instances belonging to the least frequent class.
0
Number of binary attributes.

0 tasks

Define a new task