Data
credit-g_seed_4_nrows_2000_nclasses_10_ncols_100_stratify_True

credit-g_seed_4_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by Eddie Bergman
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset credit-g (31) with seed=4 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

21 features

class (target)nominal2 unique values
0 missing
checking_statusnominal4 unique values
0 missing
durationnumeric33 unique values
0 missing
credit_historynominal5 unique values
0 missing
purposenominal10 unique values
0 missing
credit_amountnumeric921 unique values
0 missing
savings_statusnominal5 unique values
0 missing
employmentnominal5 unique values
0 missing
installment_commitmentnumeric4 unique values
0 missing
personal_statusnominal4 unique values
0 missing
other_partiesnominal3 unique values
0 missing
residence_sincenumeric4 unique values
0 missing
property_magnitudenominal4 unique values
0 missing
agenumeric53 unique values
0 missing
other_payment_plansnominal3 unique values
0 missing
housingnominal3 unique values
0 missing
existing_creditsnumeric4 unique values
0 missing
jobnominal4 unique values
0 missing
num_dependentsnumeric2 unique values
0 missing
own_telephonenominal2 unique values
0 missing
foreign_workernominal2 unique values
0 missing

19 properties

1000
Number of instances (rows) of the dataset.
21
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
7
Number of numeric attributes.
14
Number of nominal attributes.
14.29
Percentage of binary attributes.
0
Percentage of instances having missing values.
0.57
Average class difference between consecutive instances.
0
Percentage of missing values.
0.02
Number of attributes divided by the number of instances.
33.33
Percentage of numeric attributes.
70
Percentage of instances belonging to the most frequent class.
66.67
Percentage of nominal attributes.
700
Number of instances belonging to the most frequent class.
30
Percentage of instances belonging to the least frequent class.
300
Number of instances belonging to the least frequent class.
3
Number of binary attributes.

0 tasks

Define a new task