Data
numerai28.6_seed_3_nrows_2000_nclasses_10_ncols_100_stratify_True

numerai28.6_seed_3_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by Eddie Bergman
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset numerai28.6 (23517) with seed=3 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

22 features

attribute_21 (target)nominal2 unique values
0 missing
attribute_0numeric868 unique values
0 missing
attribute_1numeric870 unique values
0 missing
attribute_2numeric876 unique values
0 missing
attribute_3numeric875 unique values
0 missing
attribute_4numeric864 unique values
0 missing
attribute_5numeric869 unique values
0 missing
attribute_6numeric870 unique values
0 missing
attribute_7numeric863 unique values
0 missing
attribute_8numeric866 unique values
0 missing
attribute_9numeric875 unique values
0 missing
attribute_10numeric877 unique values
0 missing
attribute_11numeric871 unique values
0 missing
attribute_12numeric853 unique values
0 missing
attribute_13numeric897 unique values
0 missing
attribute_14numeric854 unique values
0 missing
attribute_15numeric862 unique values
0 missing
attribute_16numeric868 unique values
0 missing
attribute_17numeric875 unique values
0 missing
attribute_18numeric861 unique values
0 missing
attribute_19numeric868 unique values
0 missing
attribute_20numeric873 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
22
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
21
Number of numeric attributes.
1
Number of nominal attributes.
1010
Number of instances belonging to the most frequent class.
49.5
Percentage of instances belonging to the least frequent class.
990
Number of instances belonging to the least frequent class.
1
Number of binary attributes.
4.55
Percentage of binary attributes.
0
Percentage of instances having missing values.
0.5
Average class difference between consecutive instances.
0
Percentage of missing values.
0.01
Number of attributes divided by the number of instances.
95.45
Percentage of numeric attributes.
50.5
Percentage of instances belonging to the most frequent class.
4.55
Percentage of nominal attributes.

0 tasks

Define a new task