Data
KDDCup09_upselling_seed_4_nrows_2000_nclasses_10_ncols_100_stratify_True

KDDCup09_upselling_seed_4_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by Eddie Bergman
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset KDDCup09_upselling (44186) with seed=4 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

50 features

UPSELLING (target)nominal2 unique values
0 missing
Var6numeric502 unique values
0 missing
Var13numeric687 unique values
0 missing
Var21numeric222 unique values
0 missing
Var22numeric222 unique values
0 missing
Var24numeric31 unique values
0 missing
Var25numeric98 unique values
0 missing
Var28numeric444 unique values
0 missing
Var35numeric9 unique values
0 missing
Var38numeric1556 unique values
0 missing
Var57numeric1943 unique values
0 missing
Var65numeric9 unique values
0 missing
Var73numeric111 unique values
0 missing
Var74numeric134 unique values
0 missing
Var76numeric1546 unique values
0 missing
Var78numeric9 unique values
0 missing
Var81numeric1999 unique values
0 missing
Var83numeric46 unique values
0 missing
Var85numeric51 unique values
0 missing
Var109numeric66 unique values
0 missing
Var112numeric72 unique values
0 missing
Var113numeric1997 unique values
0 missing
Var119numeric468 unique values
0 missing
Var123numeric70 unique values
0 missing
Var125numeric1323 unique values
0 missing
Var126numeric51 unique values
0 missing
Var132numeric15 unique values
0 missing
Var133numeric1861 unique values
0 missing
Var134numeric1710 unique values
0 missing
Var140numeric664 unique values
0 missing
Var144numeric8 unique values
0 missing
Var149numeric1056 unique values
0 missing
Var153numeric1980 unique values
0 missing
Var160numeric120 unique values
0 missing
Var163numeric1278 unique values
0 missing
Var194nominal4 unique values
0 missing
Var196nominal2 unique values
0 missing
Var201nominal2 unique values
0 missing
Var203nominal4 unique values
0 missing
Var205nominal4 unique values
0 missing
Var207nominal9 unique values
0 missing
Var208nominal3 unique values
0 missing
Var210nominal5 unique values
0 missing
Var211nominal2 unique values
0 missing
Var218nominal3 unique values
0 missing
Var221nominal7 unique values
0 missing
Var223nominal5 unique values
0 missing
Var225nominal4 unique values
0 missing
Var227nominal7 unique values
0 missing
Var229nominal5 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
50
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
34
Number of numeric attributes.
16
Number of nominal attributes.
0.52
Average class difference between consecutive instances.
0
Percentage of missing values.
0.03
Number of attributes divided by the number of instances.
68
Percentage of numeric attributes.
50
Percentage of instances belonging to the most frequent class.
32
Percentage of nominal attributes.
1000
Number of instances belonging to the most frequent class.
50
Percentage of instances belonging to the least frequent class.
1000
Number of instances belonging to the least frequent class.
3
Number of binary attributes.
6
Percentage of binary attributes.
0
Percentage of instances having missing values.

0 tasks

Define a new task