Data
compass_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True

compass_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF See source Visibility: public Uploaded 17-11-2022 by Eddie Bergman
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset compass (44162) with seed=0 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

18 features

is_recid (target)nominal2 unique values
0 missing
sexnominal2 unique values
0 missing
agenumeric57 unique values
0 missing
age_catnominal3 unique values
0 missing
racenominal6 unique values
0 missing
juv_fel_countnumeric6 unique values
0 missing
juv_misd_countnumeric9 unique values
0 missing
juv_other_countnumeric6 unique values
0 missing
priors_countnumeric34 unique values
0 missing
days_b_screening_arrestnumeric205 unique values
0 missing
c_days_from_compasnumeric189 unique values
0 missing
c_charge_degreenominal11 unique values
0 missing
decile_score.1nominal10 unique values
0 missing
score_textnominal3 unique values
0 missing
v_type_of_assessmentnominal1 unique values
0 missing
v_decile_scorenominal10 unique values
0 missing
v_score_textnominal3 unique values
0 missing
endnumeric931 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
18
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
8
Number of numeric attributes.
10
Number of nominal attributes.
11.11
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
0.5
Average class difference between consecutive instances.
44.44
Percentage of numeric attributes.
0.01
Number of attributes divided by the number of instances.
55.56
Percentage of nominal attributes.
50
Percentage of instances belonging to the most frequent class.
1000
Number of instances belonging to the most frequent class.
50
Percentage of instances belonging to the least frequent class.
1000
Number of instances belonging to the least frequent class.
2
Number of binary attributes.

0 tasks

Define a new task