Data
road-safety_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True

road-safety_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by Eddie Bergman
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset road-safety (44161) with seed=0 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

33 features

Sex_of_Driver (target)nominal2 unique values
0 missing
Vehicle_Reference_df_resnumeric14 unique values
0 missing
Vehicle_Typenumeric15 unique values
0 missing
Vehicle_Manoeuvrenumeric18 unique values
0 missing
Vehicle_Location-Restricted_Lanenumeric6 unique values
0 missing
Hit_Object_in_Carriagewaynumeric8 unique values
0 missing
Hit_Object_off_Carriagewaynumeric11 unique values
0 missing
Was_Vehicle_Left_Hand_Drive?nominal2 unique values
0 missing
Age_of_Drivernumeric76 unique values
0 missing
Age_Band_of_Drivernumeric8 unique values
0 missing
Engine_Capacity_(CC)numeric272 unique values
0 missing
Propulsion_Codenumeric3 unique values
0 missing
Age_of_Vehiclenumeric28 unique values
0 missing
Location_Easting_OSGRnumeric1943 unique values
0 missing
Location_Northing_OSGRnumeric1937 unique values
0 missing
Longitudenumeric1965 unique values
0 missing
Latitudenumeric1963 unique values
0 missing
Police_Forcenumeric37 unique values
0 missing
Number_of_Vehiclesnumeric11 unique values
0 missing
Number_of_Casualtiesnumeric13 unique values
0 missing
Local_Authority_(District)numeric276 unique values
0 missing
1st_Road_Numbernumeric733 unique values
0 missing
2nd_Road_Numbernumeric347 unique values
0 missing
Urban_or_Rural_Areanominal2 unique values
0 missing
Vehicle_Reference_dfnumeric12 unique values
0 missing
Casualty_Referencenumeric15 unique values
0 missing
Sex_of_Casualtynominal2 unique values
0 missing
Age_of_Casualtynumeric93 unique values
0 missing
Age_Band_of_Casualtynumeric11 unique values
0 missing
Pedestrian_Locationnumeric10 unique values
0 missing
Pedestrian_Movementnumeric10 unique values
0 missing
Casualty_Typenumeric18 unique values
0 missing
Casualty_IMD_Decilenumeric10 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
33
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
29
Number of numeric attributes.
4
Number of nominal attributes.
12.12
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
0.49
Average class difference between consecutive instances.
87.88
Percentage of numeric attributes.
0.02
Number of attributes divided by the number of instances.
12.12
Percentage of nominal attributes.
50
Percentage of instances belonging to the most frequent class.
1000
Number of instances belonging to the most frequent class.
50
Percentage of instances belonging to the least frequent class.
1000
Number of instances belonging to the least frequent class.
4
Number of binary attributes.

0 tasks

Define a new task