{ "data_id": "44449", "name": "rl_seed_1_nrows_2000_nclasses_10_ncols_100_stratify_True", "exact_name": "rl_seed_1_nrows_2000_nclasses_10_ncols_100_stratify_True", "version": 1, "version_label": "d27aa656-0e2a-4d24-93a4-c82a56eacfb5", "description": "Subsampling of the dataset rl (44160) with\n\nseed=1\nargs.nrows=2000\nargs.ncols=100\nargs.nclasses=10\nargs.no_stratify=True\nGenerated with the following source code:\n\n\n```python\n def subsample(\n self,\n seed: int,\n nrows_max: int = 2_000,\n ncols_max: int = 100,\n nclasses_max: int = 10,\n stratified: bool = True,\n ) -> Dataset:\n rng = np.random.default_rng(seed)\n\n x = self.x\n y = self.y\n\n # Uniformly sample\n classes = y.unique()\n if len(classes) > nclasses_max:\n vcs = y.value_counts()\n selected_classes = rng.choice(\n classes,\n size=nclasses_max,\n replace=False,\n p=vcs \/ sum(vcs),\n )\n\n # Select the indices where one of these classes is present\n idxs = y.index[y.isin(classes)]\n x = x.iloc[idxs]\n y = y.iloc[idxs]\n\n # Uniformly sample columns if required\n if len(x.columns) > ncols_max:\n columns_idxs = rng.choice(\n list(range(len(x.columns))), size=ncols_max, replace=False\n )\n sorted_column_idxs = sorted(columns_idxs)\n selected_columns = list(x.columns[sorted_column_idxs])\n x = x[selected_columns]\n else:\n sorted_column_idxs = list(range(len(x.columns)))\n\n if len(x) > nrows_max:\n # Stratify accordingly\n target_name = y.name\n data = pd.concat((x, y), axis=\"columns\")\n _, subset = train_test_split(\n data,\n test_size=nrows_max,\n stratify=data[target_name],\n shuffle=True,\n random_state=seed,\n )\n x = subset.drop(target_name, axis=\"columns\")\n y = subset[target_name]\n\n # We need to convert categorical columns to string for openml\n categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs]\n columns = list(x.columns)\n\n return Dataset(\n # Technically this is not the same but it's where it was derived from\n dataset=self.dataset,\n x=x,\n y=y,\n categorical_mask=categorical_mask,\n columns=columns,\n )\n```", "format": "arff", "uploader": "Eddie Bergman", "uploader_id": 32840, "visibility": "public", "creator": "\"Eddie Bergman\"", "contributor": null, "date": "2022-11-17 18:02:23", "update_comment": null, "last_update": "2022-11-17 18:02:23", "licence": "Public", "status": "active", "error_message": null, "url": "https:\/\/api.openml.org\/data\/download\/22111211\/dataset", "kaggle_url": null, "default_target_attribute": "class", "row_id_attribute": null, "ignore_attribute": null, "runs": 0, "suggest": { "input": [ "rl_seed_1_nrows_2000_nclasses_10_ncols_100_stratify_True", "Subsampling of the dataset rl (44160) with seed=1 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( class " ], "weight": 5 }, "qualities": { "NumberOfInstances": 2000, "NumberOfFeatures": 13, "NumberOfClasses": 2, "NumberOfMissingValues": 0, "NumberOfInstancesWithMissingValues": 0, "NumberOfNumericFeatures": 5, "NumberOfSymbolicFeatures": 8, "PercentageOfBinaryFeatures": 30.76923076923077, "PercentageOfInstancesWithMissingValues": 0, "PercentageOfMissingValues": 0, "AutoCorrelation": 0.5152576288144072, "PercentageOfNumericFeatures": 38.46153846153847, "Dimensionality": 0.0065, "PercentageOfSymbolicFeatures": 61.53846153846154, "MajorityClassPercentage": 50, "MajorityClassSize": 1000, "MinorityClassPercentage": 50, "MinorityClassSize": 1000, "NumberOfBinaryFeatures": 4 }, "tags": [], "features": [ { "name": "class", "index": "12", "type": "nominal", "distinct": "2", "missing": "0", "target": "1", "distr": [ [ "0", "1" ], [ [ "1000", "0" ], [ "0", "1000" ] ] ] }, { "name": "V1", "index": "0", "type": "numeric", "distinct": "308", "missing": "0", "min": "46", "max": "1448", "mean": "227", "stdev": "116" }, { "name": "V5", "index": "1", "type": "numeric", "distinct": "51", "missing": "0", "min": "0", "max": "66", "mean": "7", "stdev": "8" }, { "name": "V6", "index": "2", "type": "numeric", "distinct": "55", "missing": "0", "min": "2", "max": "72", "mean": "17", "stdev": "13" }, { "name": "V8", "index": "3", "type": "nominal", "distinct": "2", "missing": "0", "distr": [ [ "0", "2" ], [ [ "35", "21" ], [ "965", "979" ] ] ] }, { "name": "V14", "index": "4", "type": "nominal", "distinct": "3", "missing": "0", "distr": [ [ "0", "1", "2" ], [ [ "432", "456" ], [ "67", "59" ], [ "501", "485" ] ] ] }, { "name": "V15", "index": "5", "type": "nominal", "distinct": "1", "missing": "0", "distr": [ [ "0" ], [ [ "1000", "1000" ] ] ] }, { "name": "V17", "index": "6", "type": "nominal", "distinct": "3", "missing": "0", "distr": [ [ "0", "1", "2" ], [ [ "172", "155" ], [ "328", "350" ], [ "500", "495" ] ] ] }, { "name": "V18", "index": "7", "type": "nominal", "distinct": "2", "missing": "0", "distr": [ [ "0", "1" ], [ [ "361", "430" ], [ "639", "570" ] ] ] }, { "name": "V19", "index": "8", "type": "nominal", "distinct": "2", "missing": "0", "distr": [ [ "0", "1" ], [ [ "680", "705" ], [ "320", "295" ] ] ] }, { "name": "V20", "index": "9", "type": "numeric", "distinct": "369", "missing": "0", "min": "1", "max": "404", "mean": "155", "stdev": "142" }, { "name": "V21", "index": "10", "type": "numeric", "distinct": "313", "missing": "0", "min": "0", "max": "562", "mean": "112", "stdev": "130" }, { "name": "V22", "index": "11", "type": "nominal", "distinct": "16", "missing": "0", "distr": [ [ "0", "1", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "2", "3", "4", "5", "6", "7", "8", "9" ], [ [ "0", "4" ], [ "2", "0" ], [ "2", "0" ], [ "0", "0" ], [ "2", "0" ], [ "3", "1" ], [ "4", "2" ], [ "2", "5" ], [ "0", "0" ], [ "0", "0" ], [ "0", "5" ], [ "967", "969" ], [ "0", "1" ], [ "2", "4" ], [ "0", "1" ], [ "3", "2" ], [ "0", "0" ], [ "5", "0" ], [ "7", "0" ], [ "1", "6" ] ] ] } ], "nr_of_issues": 0, "nr_of_downvotes": 0, "nr_of_likes": 0, "nr_of_downloads": 0, "total_downloads": 0, "reach": 0, "reuse": 0, "impact_of_reuse": 0, "reach_of_reuse": 0, "impact": 0 }