Data
eye_movements_seed_2_nrows_2000_nclasses_10_ncols_100_stratify_True

eye_movements_seed_2_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by Eddie Bergman
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset eye_movements (44130) with seed=2 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

21 features

label (target)nominal2 unique values
0 missing
lineNonumeric2000 unique values
0 missing
assgNonumeric317 unique values
0 missing
prevFixDurnumeric45 unique values
0 missing
firstfixDurnumeric47 unique values
0 missing
firstPassFixDurnumeric69 unique values
0 missing
nextFixDurnumeric50 unique values
0 missing
firstSaccLennumeric1887 unique values
0 missing
lastSaccLennumeric1931 unique values
0 missing
prevFixPosnumeric1808 unique values
0 missing
landingPosnumeric1805 unique values
0 missing
leavingPosnumeric1817 unique values
0 missing
totalFixDurnumeric73 unique values
0 missing
meanFixDurnumeric103 unique values
0 missing
regressLennumeric240 unique values
0 missing
regressDurnumeric174 unique values
0 missing
pupilDiamMaxnumeric1436 unique values
0 missing
pupilDiamLagnumeric1193 unique values
0 missing
timePrtctgnumeric554 unique values
0 missing
titleNonumeric10 unique values
0 missing
wordNonumeric10 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
21
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
20
Number of numeric attributes.
1
Number of nominal attributes.
4.76
Percentage of binary attributes.
0
Percentage of instances having missing values.
0.51
Average class difference between consecutive instances.
0
Percentage of missing values.
0.01
Number of attributes divided by the number of instances.
95.24
Percentage of numeric attributes.
50
Percentage of instances belonging to the most frequent class.
4.76
Percentage of nominal attributes.
1000
Number of instances belonging to the most frequent class.
50
Percentage of instances belonging to the least frequent class.
1000
Number of instances belonging to the least frequent class.
1
Number of binary attributes.

0 tasks

Define a new task