Data
eye_movements_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True

eye_movements_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by Eddie Bergman
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • Computer Systems Machine Learning
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset eye_movements (44130) with seed=0 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

21 features

label (target)nominal2 unique values
0 missing
lineNonumeric2000 unique values
0 missing
assgNonumeric318 unique values
0 missing
prevFixDurnumeric43 unique values
0 missing
firstfixDurnumeric46 unique values
0 missing
firstPassFixDurnumeric67 unique values
0 missing
nextFixDurnumeric47 unique values
0 missing
firstSaccLennumeric1878 unique values
0 missing
lastSaccLennumeric1939 unique values
0 missing
prevFixPosnumeric1797 unique values
0 missing
landingPosnumeric1820 unique values
0 missing
leavingPosnumeric1807 unique values
0 missing
totalFixDurnumeric72 unique values
0 missing
meanFixDurnumeric101 unique values
0 missing
regressLennumeric235 unique values
0 missing
regressDurnumeric175 unique values
0 missing
pupilDiamMaxnumeric1432 unique values
0 missing
pupilDiamLagnumeric1178 unique values
0 missing
timePrtctgnumeric580 unique values
0 missing
titleNonumeric10 unique values
0 missing
wordNonumeric10 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
21
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
20
Number of numeric attributes.
1
Number of nominal attributes.
1000
Number of instances belonging to the least frequent class.
1
Number of binary attributes.
4.76
Percentage of binary attributes.
0
Percentage of instances having missing values.
0.5
Average class difference between consecutive instances.
0
Percentage of missing values.
0.01
Number of attributes divided by the number of instances.
95.24
Percentage of numeric attributes.
50
Percentage of instances belonging to the most frequent class.
4.76
Percentage of nominal attributes.
1000
Number of instances belonging to the most frequent class.
50
Percentage of instances belonging to the least frequent class.

0 tasks

Define a new task