Data
Higgs_seed_4_nrows_2000_nclasses_10_ncols_100_stratify_True

Higgs_seed_4_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by Eddie Bergman
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • Computer Systems Machine Learning
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset Higgs (44129) with seed=4 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

25 features

target (target)nominal2 unique values
0 missing
lepton_pTnumeric1794 unique values
0 missing
lepton_etanumeric1550 unique values
0 missing
lepton_phinumeric1728 unique values
0 missing
missing_energy_magnitudenumeric1999 unique values
0 missing
missing_energy_phinumeric1996 unique values
0 missing
jet_1_ptnumeric1874 unique values
0 missing
jet_1_etanumeric1507 unique values
0 missing
jet_1_phinumeric1697 unique values
0 missing
jet_2_ptnumeric1824 unique values
0 missing
jet_2_etanumeric1555 unique values
0 missing
jet_2_phinumeric1701 unique values
0 missing
jet_3_ptnumeric1771 unique values
0 missing
jet_3_etanumeric1582 unique values
0 missing
jet_3_phinumeric1715 unique values
0 missing
jet_4_ptnumeric1683 unique values
0 missing
jet_4_etanumeric1641 unique values
0 missing
jet_4_phinumeric1718 unique values
0 missing
m_jjnumeric1999 unique values
0 missing
m_jjjnumeric1988 unique values
0 missing
m_lvnumeric1946 unique values
0 missing
m_jlvnumeric1988 unique values
0 missing
m_bbnumeric1990 unique values
0 missing
m_wbbnumeric1987 unique values
0 missing
m_wwbbnumeric1995 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
25
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
24
Number of numeric attributes.
1
Number of nominal attributes.
4
Percentage of nominal attributes.
50
Percentage of instances belonging to the most frequent class.
1000
Number of instances belonging to the most frequent class.
50
Percentage of instances belonging to the least frequent class.
1000
Number of instances belonging to the least frequent class.
1
Number of binary attributes.
4
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
0.48
Average class difference between consecutive instances.
96
Percentage of numeric attributes.
0.01
Number of attributes divided by the number of instances.

0 tasks

Define a new task