{ "data_id": "44414", "name": "MiniBooNE_seed_2_nrows_2000_nclasses_10_ncols_100_stratify_True", "exact_name": "MiniBooNE_seed_2_nrows_2000_nclasses_10_ncols_100_stratify_True", "version": 1, "version_label": "b144ec77-9a94-4443-adb4-4b998f0493b5", "description": "Subsampling of the dataset MiniBooNE (44128) with\n\nseed=2\nargs.nrows=2000\nargs.ncols=100\nargs.nclasses=10\nargs.no_stratify=True\nGenerated with the following source code:\n\n\n```python\n def subsample(\n self,\n seed: int,\n nrows_max: int = 2_000,\n ncols_max: int = 100,\n nclasses_max: int = 10,\n stratified: bool = True,\n ) -> Dataset:\n rng = np.random.default_rng(seed)\n\n x = self.x\n y = self.y\n\n # Uniformly sample\n classes = y.unique()\n if len(classes) > nclasses_max:\n vcs = y.value_counts()\n selected_classes = rng.choice(\n classes,\n size=nclasses_max,\n replace=False,\n p=vcs \/ sum(vcs),\n )\n\n # Select the indices where one of these classes is present\n idxs = y.index[y.isin(classes)]\n x = x.iloc[idxs]\n y = y.iloc[idxs]\n\n # Uniformly sample columns if required\n if len(x.columns) > ncols_max:\n columns_idxs = rng.choice(\n list(range(len(x.columns))), size=ncols_max, replace=False\n )\n sorted_column_idxs = sorted(columns_idxs)\n selected_columns = list(x.columns[sorted_column_idxs])\n x = x[selected_columns]\n else:\n sorted_column_idxs = list(range(len(x.columns)))\n\n if len(x) > nrows_max:\n # Stratify accordingly\n target_name = y.name\n data = pd.concat((x, y), axis=\"columns\")\n _, subset = train_test_split(\n data,\n test_size=nrows_max,\n stratify=data[target_name],\n shuffle=True,\n random_state=seed,\n )\n x = subset.drop(target_name, axis=\"columns\")\n y = subset[target_name]\n\n # We need to convert categorical columns to string for openml\n categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs]\n columns = list(x.columns)\n\n return Dataset(\n # Technically this is not the same but it's where it was derived from\n dataset=self.dataset,\n x=x,\n y=y,\n categorical_mask=categorical_mask,\n columns=columns,\n )\n```", "format": "arff", "uploader": "Eddie Bergman", "uploader_id": 32840, "visibility": "public", "creator": "\"Eddie Bergman\"", "contributor": null, "date": "2022-11-17 17:59:22", "update_comment": null, "last_update": "2022-11-17 17:59:22", "licence": "CC0", "status": "active", "error_message": null, "url": "https:\/\/api.openml.org\/data\/download\/22111176\/dataset", "default_target_attribute": "signal", "row_id_attribute": null, "ignore_attribute": null, "runs": 0, "suggest": { "input": [ "MiniBooNE_seed_2_nrows_2000_nclasses_10_ncols_100_stratify_True", "Subsampling of the dataset MiniBooNE (44128) with seed=2 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice " ], "weight": 5 }, "qualities": { "NumberOfInstances": 2000, "NumberOfFeatures": 51, "NumberOfClasses": 2, "NumberOfMissingValues": 0, "NumberOfInstancesWithMissingValues": 0, "NumberOfNumericFeatures": 50, "NumberOfSymbolicFeatures": 1, "PercentageOfBinaryFeatures": 1.9607843137254901, "PercentageOfInstancesWithMissingValues": 0, "PercentageOfMissingValues": 0, "AutoCorrelation": 0.49824912456228115, "PercentageOfNumericFeatures": 98.0392156862745, "Dimensionality": 0.0255, "PercentageOfSymbolicFeatures": 1.9607843137254901, "MajorityClassPercentage": 50, "MajorityClassSize": 1000, "MinorityClassPercentage": 50, "MinorityClassSize": 1000, "NumberOfBinaryFeatures": 1 }, "tags": [ { "uploader": "38960", "tag": "Medicine" }, { "uploader": "38960", "tag": "Statistics" } ], "features": [ { "name": "signal", "index": "50", "type": "nominal", "distinct": "2", "missing": "0", "target": "1", "distr": [ [ "True", "False" ], [ [ "1000", "0" ], [ "0", "1000" ] ] ] }, { "name": "ParticleID_0", "index": "0", "type": "numeric", "distinct": "1991", "missing": "0", "min": "-999", "max": "9", "mean": "4", "stdev": "32" }, { "name": "ParticleID_1", "index": "1", "type": "numeric", "distinct": "1996", "missing": "0", "min": "-999", "max": "6", "mean": "0", "stdev": "32" }, { "name": "ParticleID_2", "index": "2", "type": "numeric", "distinct": "1994", "missing": "0", "min": "-999", "max": "3516", "mean": "132", "stdev": "220" }, { "name": "ParticleID_3", "index": "3", "type": "numeric", "distinct": "1981", "missing": "0", "min": "-999", "max": "1", "mean": "-1", "stdev": "32" }, { "name": "ParticleID_4", "index": "4", "type": "numeric", "distinct": "1373", "missing": "0", "min": "-999", "max": "0", "mean": "-1", "stdev": "32" }, { "name": "ParticleID_5", "index": "5", "type": "numeric", "distinct": "1690", "missing": "0", "min": "-999", "max": "1", "mean": "-1", "stdev": "32" }, { "name": "ParticleID_6", "index": "6", "type": "numeric", "distinct": "1989", "missing": "0", "min": "-999", "max": "3", "mean": "0", "stdev": "32" }, { "name": "ParticleID_7", "index": "7", "type": "numeric", "distinct": "1988", "missing": "0", "min": "-999", "max": "1", "mean": "0", "stdev": "32" }, { "name": "ParticleID_8", "index": "8", "type": "numeric", "distinct": "1974", "missing": "0", "min": "-999", "max": "4", "mean": "2", "stdev": "32" }, { "name": "ParticleID_9", "index": "9", "type": "numeric", "distinct": "1990", "missing": "0", "min": "-999", "max": "0", "mean": "-1", "stdev": "32" }, { "name": "ParticleID_10", "index": "10", "type": "numeric", "distinct": "1967", "missing": "0", "min": "-999", "max": "7", "mean": "3", "stdev": "32" }, { "name": "ParticleID_11", "index": "11", "type": "numeric", "distinct": "1994", "missing": "0", "min": "-999", "max": "515", "mean": "162", "stdev": "123" }, { "name": "ParticleID_12", "index": "12", "type": "numeric", "distinct": "1994", "missing": "0", "min": "-999", "max": "1", "mean": "-1", "stdev": "32" }, { "name": "ParticleID_13", "index": "13", "type": "numeric", "distinct": "1966", "missing": "0", "min": "-999", "max": "1", "mean": "-1", "stdev": "32" }, { "name": "ParticleID_14", "index": "14", "type": "numeric", "distinct": "1989", "missing": "0", "min": "-999", "max": "7", "mean": "1", "stdev": "32" }, { "name": "ParticleID_15", "index": "15", "type": "numeric", "distinct": "1994", "missing": "0", "min": "-999", "max": "5496", "mean": "1079", "stdev": "747" }, { "name": "ParticleID_16", "index": "16", "type": "numeric", "distinct": "1997", "missing": "0", "min": "-999", "max": "4", "mean": "0", "stdev": "32" }, { "name": "ParticleID_17", "index": "17", "type": "numeric", "distinct": "1998", "missing": "0", "min": "-999", "max": "319", "mean": "23", "stdev": "42" }, { "name": "ParticleID_18", "index": "18", "type": "numeric", "distinct": "1880", "missing": "0", "min": "-999", "max": "1", "mean": "-1", "stdev": "32" }, { "name": "ParticleID_19", "index": "19", "type": "numeric", "distinct": "1996", "missing": "0", "min": "-999", "max": "3", "mean": "0", "stdev": "32" }, { "name": "ParticleID_20", "index": "20", "type": "numeric", "distinct": "1998", "missing": "0", "min": "-999", "max": "12", "mean": "-1", "stdev": "32" }, { "name": "ParticleID_21", "index": "21", "type": "numeric", "distinct": "1871", "missing": "0", "min": "-999", "max": "1", "mean": "-1", "stdev": "32" }, { "name": "ParticleID_22", "index": "22", "type": "numeric", "distinct": "1995", "missing": "0", "min": "-999", "max": "1121", "mean": "101", "stdev": "106" }, { "name": "ParticleID_23", "index": "23", "type": "numeric", "distinct": "1995", "missing": "0", "min": "-999", "max": "27", "mean": "3", "stdev": "32" }, { "name": "ParticleID_24", "index": "24", "type": "numeric", "distinct": "1974", "missing": "0", "min": "-999", "max": "0", "mean": "-1", "stdev": "32" }, { "name": "ParticleID_25", "index": "25", "type": "numeric", "distinct": "1998", "missing": "0", "min": "-999", "max": "3", "mean": "-1", "stdev": "32" }, { "name": "ParticleID_26", "index": "26", "type": "numeric", "distinct": "1918", "missing": "0", "min": "-999", "max": "699", "mean": "90", "stdev": "88" }, { "name": "ParticleID_27", "index": "27", "type": "numeric", "distinct": "1978", "missing": "0", "min": "-999", "max": "3", "mean": "1", "stdev": "32" }, { "name": "ParticleID_28", "index": "28", "type": "numeric", "distinct": "1985", "missing": "0", "min": "-999", "max": "0", "mean": "-1", "stdev": "32" }, { "name": "ParticleID_29", "index": "29", "type": "numeric", "distinct": "1998", "missing": "0", "min": "-999", "max": "2", "mean": "-1", "stdev": "32" }, { "name": "ParticleID_30", "index": "30", "type": "numeric", "distinct": "1995", "missing": "0", "min": "-999", "max": "23", "mean": "6", "stdev": "32" }, { "name": "ParticleID_31", "index": "31", "type": "numeric", "distinct": "1985", "missing": "0", "min": "-999", "max": "2", "mean": "0", "stdev": "32" }, { "name": "ParticleID_32", "index": "32", "type": "numeric", "distinct": "1997", "missing": "0", "min": "-999", "max": "5", "mean": "0", "stdev": "32" }, { "name": "ParticleID_33", "index": "33", "type": "numeric", "distinct": "1994", "missing": "0", "min": "-999", "max": "500", "mean": "363", "stdev": "108" }, { "name": "ParticleID_34", "index": "34", "type": "numeric", "distinct": "1989", "missing": "0", "min": "-999", "max": "0", "mean": "-1", "stdev": "32" }, { "name": "ParticleID_35", "index": "35", "type": "numeric", "distinct": "1997", "missing": "0", "min": "-999", "max": "1", "mean": "-1", "stdev": "32" }, { "name": "ParticleID_36", "index": "36", "type": "numeric", "distinct": "1997", "missing": "0", "min": "-999", "max": "5", "mean": "0", "stdev": "32" }, { "name": "ParticleID_37", "index": "37", "type": "numeric", "distinct": "1995", "missing": "0", "min": "-999", "max": "0", "mean": "-4", "stdev": "32" }, { "name": "ParticleID_38", "index": "38", "type": "numeric", "distinct": "1973", "missing": "0", "min": "-999", "max": "3", "mean": "0", "stdev": "32" }, { "name": "ParticleID_39", "index": "39", "type": "numeric", "distinct": "1992", "missing": "0", "min": "-999", "max": "0", "mean": "-1", "stdev": "32" }, { "name": "ParticleID_40", "index": "40", "type": "numeric", "distinct": "1979", "missing": "0", "min": "-999", "max": "273", "mean": "144", "stdev": "48" }, { "name": "ParticleID_41", "index": "41", "type": "numeric", "distinct": "1998", "missing": "0", "min": "-999", "max": "126", "mean": "-18", "stdev": "47" }, { "name": "ParticleID_42", "index": "42", "type": "numeric", "distinct": "1999", "missing": "0", "min": "-999", "max": "12", "mean": "0", "stdev": "32" }, { "name": "ParticleID_43", "index": "43", "type": "numeric", "distinct": "1999", "missing": "0", "min": "-999", "max": "35", "mean": "5", "stdev": "32" }, { "name": "ParticleID_44", "index": "44", "type": "numeric", "distinct": "618", "missing": "0", "min": "-999", "max": "0", "mean": "-1", "stdev": "32" }, { "name": "ParticleID_45", "index": "45", "type": "numeric", "distinct": "1995", "missing": "0", "min": "-999", "max": "0", "mean": "-1", "stdev": "32" }, { "name": "ParticleID_46", "index": "46", "type": "numeric", "distinct": "1998", "missing": "0", "min": "-999", "max": "2", "mean": "-1", "stdev": "32" }, { "name": "ParticleID_47", "index": "47", "type": "numeric", "distinct": "1997", "missing": "0", "min": "-999", "max": "14", "mean": "2", "stdev": "32" }, { "name": "ParticleID_48", "index": "48", "type": "numeric", "distinct": "1998", "missing": "0", "min": "-999", "max": "17", "mean": "0", "stdev": "32" }, { "name": "ParticleID_49", "index": "49", "type": "numeric", "distinct": "1988", "missing": "0", "min": "-999", "max": "0", "mean": "-1", "stdev": "32" } ], "nr_of_issues": 0, "nr_of_downvotes": 0, "nr_of_likes": 0, "nr_of_downloads": 0, "total_downloads": 0, "reach": 0, "reuse": 0, "impact_of_reuse": 0, "reach_of_reuse": 0, "impact": 0 }