{ "data_id": "44384", "name": "pol_seed_2_nrows_2000_nclasses_10_ncols_100_stratify_True", "exact_name": "pol_seed_2_nrows_2000_nclasses_10_ncols_100_stratify_True", "version": 1, "version_label": "149ef21d-de34-4951-a394-02c38c1d9355", "description": "Subsampling of the dataset pol (44122) with\n\nseed=2\nargs.nrows=2000\nargs.ncols=100\nargs.nclasses=10\nargs.no_stratify=True\nGenerated with the following source code:\n\n\n```python\n def subsample(\n self,\n seed: int,\n nrows_max: int = 2_000,\n ncols_max: int = 100,\n nclasses_max: int = 10,\n stratified: bool = True,\n ) -> Dataset:\n rng = np.random.default_rng(seed)\n\n x = self.x\n y = self.y\n\n # Uniformly sample\n classes = y.unique()\n if len(classes) > nclasses_max:\n vcs = y.value_counts()\n selected_classes = rng.choice(\n classes,\n size=nclasses_max,\n replace=False,\n p=vcs \/ sum(vcs),\n )\n\n # Select the indices where one of these classes is present\n idxs = y.index[y.isin(classes)]\n x = x.iloc[idxs]\n y = y.iloc[idxs]\n\n # Uniformly sample columns if required\n if len(x.columns) > ncols_max:\n columns_idxs = rng.choice(\n list(range(len(x.columns))), size=ncols_max, replace=False\n )\n sorted_column_idxs = sorted(columns_idxs)\n selected_columns = list(x.columns[sorted_column_idxs])\n x = x[selected_columns]\n else:\n sorted_column_idxs = list(range(len(x.columns)))\n\n if len(x) > nrows_max:\n # Stratify accordingly\n target_name = y.name\n data = pd.concat((x, y), axis=\"columns\")\n _, subset = train_test_split(\n data,\n test_size=nrows_max,\n stratify=data[target_name],\n shuffle=True,\n random_state=seed,\n )\n x = subset.drop(target_name, axis=\"columns\")\n y = subset[target_name]\n\n # We need to convert categorical columns to string for openml\n categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs]\n columns = list(x.columns)\n\n return Dataset(\n # Technically this is not the same but it's where it was derived from\n dataset=self.dataset,\n x=x,\n y=y,\n categorical_mask=categorical_mask,\n columns=columns,\n )\n```", "format": "arff", "uploader": "Eddie Bergman", "uploader_id": 32840, "visibility": "public", "creator": "\"Eddie Bergman\"", "contributor": null, "date": "2022-11-17 17:57:06", "update_comment": null, "last_update": "2022-11-17 17:57:06", "licence": "Public", "status": "active", "error_message": null, "url": "https:\/\/api.openml.org\/data\/download\/22111146\/dataset", "default_target_attribute": "binaryClass", "row_id_attribute": null, "ignore_attribute": null, "runs": 0, "suggest": { "input": [ "pol_seed_2_nrows_2000_nclasses_10_ncols_100_stratify_True", "Subsampling of the dataset pol (44122) with seed=2 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( clas " ], "weight": 5 }, "qualities": { "NumberOfInstances": 2000, "NumberOfFeatures": 27, "NumberOfClasses": 2, "NumberOfMissingValues": 0, "NumberOfInstancesWithMissingValues": 0, "NumberOfNumericFeatures": 26, "NumberOfSymbolicFeatures": 1, "MinorityClassPercentage": 50, "MinorityClassSize": 1000, "NumberOfBinaryFeatures": 1, "PercentageOfBinaryFeatures": 3.7037037037037033, "PercentageOfInstancesWithMissingValues": 0, "AutoCorrelation": 0.5162581290645323, "PercentageOfMissingValues": 0, "Dimensionality": 0.0135, "PercentageOfNumericFeatures": 96.29629629629629, "MajorityClassPercentage": 50, "PercentageOfSymbolicFeatures": 3.7037037037037033, "MajorityClassSize": 1000 }, "tags": [ { "uploader": "38960", "tag": "Statistics" } ], "features": [ { "name": "binaryClass", "index": "26", "type": "nominal", "distinct": "2", "missing": "0", "target": "1", "distr": [ [ "N", "P" ], [ [ "1000", "0" ], [ "0", "1000" ] ] ] }, { "name": "f5", "index": "0", "type": "numeric", "distinct": "157", "missing": "0", "min": "13", "max": "200", "mean": "74", "stdev": "32" }, { "name": "f6", "index": "1", "type": "numeric", "distinct": "92", "missing": "0", "min": "77", "max": "190", "mean": "92", "stdev": "19" }, { "name": "f7", "index": "2", "type": "numeric", "distinct": "84", "missing": "0", "min": "76", "max": "194", "mean": "83", "stdev": "15" }, { "name": "f8", "index": "3", "type": "numeric", "distinct": "63", "missing": "0", "min": "71", "max": "165", "mean": "74", "stdev": "11" }, { "name": "f9", "index": "4", "type": "numeric", "distinct": "53", "missing": "0", "min": "94", "max": "170", "mean": "95", "stdev": "7" }, { "name": "f13", "index": "5", "type": "numeric", "distinct": "61", "missing": "0", "min": "0", "max": "83", "mean": "6", "stdev": "13" }, { "name": "f14", "index": "6", "type": "numeric", "distinct": "79", "missing": "0", "min": "0", "max": "115", "mean": "12", "stdev": "19" }, { "name": "f15", "index": "7", "type": "numeric", "distinct": "85", "missing": "0", "min": "0", "max": "116", "mean": "12", "stdev": "19" }, { "name": "f16", "index": "8", "type": "numeric", "distinct": "83", "missing": "0", "min": "0", "max": "127", "mean": "11", "stdev": "18" }, { "name": "f17", "index": "9", "type": "numeric", "distinct": "85", "missing": "0", "min": "0", "max": "126", "mean": "12", "stdev": "19" }, { "name": "f18", "index": "10", "type": "numeric", "distinct": "88", "missing": "0", "min": "0", "max": "105", "mean": "11", "stdev": "19" }, { "name": "f19", "index": "11", "type": "numeric", "distinct": "76", "missing": "0", "min": "0", "max": "98", "mean": "7", "stdev": "16" }, { "name": "f20", "index": "12", "type": "numeric", "distinct": "65", "missing": "0", "min": "0", "max": "98", "mean": "3", "stdev": "11" }, { "name": "f21", "index": "13", "type": "numeric", "distinct": "61", "missing": "0", "min": "0", "max": "75", "mean": "3", "stdev": "10" }, { "name": "f22", "index": "14", "type": "numeric", "distinct": "63", "missing": "0", "min": "0", "max": "131", "mean": "3", "stdev": "10" }, { "name": "f23", "index": "15", "type": "numeric", "distinct": "61", "missing": "0", "min": "0", "max": "94", "mean": "2", "stdev": "9" }, { "name": "f24", "index": "16", "type": "numeric", "distinct": "49", "missing": "0", "min": "0", "max": "55", "mean": "1", "stdev": "7" }, { "name": "f25", "index": "17", "type": "numeric", "distinct": "46", "missing": "0", "min": "0", "max": "60", "mean": "1", "stdev": "6" }, { "name": "f26", "index": "18", "type": "numeric", "distinct": "41", "missing": "0", "min": "0", "max": "67", "mean": "1", "stdev": "5" }, { "name": "f27", "index": "19", "type": "numeric", "distinct": "33", "missing": "0", "min": "0", "max": "59", "mean": "1", "stdev": "5" }, { "name": "f28", "index": "20", "type": "numeric", "distinct": "34", "missing": "0", "min": "0", "max": "65", "mean": "1", "stdev": "4" }, { "name": "f29", "index": "21", "type": "numeric", "distinct": "35", "missing": "0", "min": "0", "max": "55", "mean": "1", "stdev": "4" }, { "name": "f30", "index": "22", "type": "numeric", "distinct": "28", "missing": "0", "min": "0", "max": "42", "mean": "0", "stdev": "3" }, { "name": "f31", "index": "23", "type": "numeric", "distinct": "28", "missing": "0", "min": "0", "max": "42", "mean": "0", "stdev": "3" }, { "name": "f32", "index": "24", "type": "numeric", "distinct": "26", "missing": "0", "min": "0", "max": "39", "mean": "0", "stdev": "3" }, { "name": "f33", "index": "25", "type": "numeric", "distinct": "19", "missing": "0", "min": "0", "max": "30", "mean": "0", "stdev": "2" } ], "nr_of_issues": 0, "nr_of_downvotes": 0, "nr_of_likes": 0, "nr_of_downloads": 0, "total_downloads": 0, "reach": 0, "reuse": 0, "impact_of_reuse": 0, "reach_of_reuse": 0, "impact": 0 }