Data
california_seed_1_nrows_2000_nclasses_10_ncols_100_stratify_True

california_seed_1_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF See source Visibility: public Uploaded 17-11-2022 by Eddie Bergman
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset california (44090) with seed=1 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

9 features

price (target)nominal2 unique values
0 missing
MedIncnumeric1796 unique values
0 missing
HouseAgenumeric51 unique values
0 missing
AveRoomsnumeric1972 unique values
0 missing
AveBedrmsnumeric1857 unique values
0 missing
Populationnumeric1398 unique values
0 missing
AveOccupnumeric1964 unique values
0 missing
Latitudenumeric513 unique values
0 missing
Longitudenumeric532 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
9
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
8
Number of numeric attributes.
1
Number of nominal attributes.
50
Percentage of instances belonging to the least frequent class.
1000
Number of instances belonging to the least frequent class.
1
Number of binary attributes.
11.11
Percentage of binary attributes.
0
Percentage of instances having missing values.
0.48
Average class difference between consecutive instances.
0
Percentage of missing values.
0
Number of attributes divided by the number of instances.
88.89
Percentage of numeric attributes.
50
Percentage of instances belonging to the most frequent class.
11.11
Percentage of nominal attributes.
1000
Number of instances belonging to the most frequent class.

0 tasks

Define a new task