{ "data_id": "44056", "name": "visualizing_soil", "exact_name": "visualizing_soil", "version": 4, "version_label": null, "description": "Dataset used in the tabular data benchmark https:\/\/github.com\/LeoGrin\/tabular-benchmark, \n transformed in the same way. This dataset belongs to the \"regression on categorical and\n numerical features\" benchmark. Original description: \n \n**Author**: \n**Source**: Unknown - Date unknown \n**Please cite**: \n\nThis S dump contains 22 data sets from the\nbook Visualizing Data published by\nHobart Press (books@hobart.com).\nThe dump was created by data.dump()\nand can be read back into S by data.restore().\nThe name of each S data set is the name of\nthe data set used in the book. To find the\ndescription of the data set in the book look\nunder the entry - data, name - in the index.\nFor example, one data set is barley.\nTo find the description of barley, look\nin the index under the entry - data, barley.\n\nFile: ..\/data\/visualizing\/soil.csv\n\n\nInformation about the dataset\nCLASSTYPE: numeric\nCLASSINDEX: none specific", "format": "arff", "uploader": "Leo Grin", "uploader_id": 26324, "visibility": "public", "creator": "\"Hobart Press\"", "contributor": "\"Leo Grin\"", "date": "2022-06-21 10:29:54", "update_comment": null, "last_update": "2022-06-21 10:29:54", "licence": "Public", "status": "active", "error_message": null, "url": "https:\/\/old.openml.org\/data\/download\/22103152\/dataset", "default_target_attribute": "track", "row_id_attribute": null, "ignore_attribute": null, "runs": 0, "suggest": { "input": [ "visualizing_soil", "Dataset used in the tabular data benchmark https:\/\/github.com\/LeoGrin\/tabular-benchmark, transformed in the same way. This dataset belongs to the \"regression on categorical and numerical features\" benchmark. Original description: This S dump contains 22 data sets from the book Visualizing Data published by Hobart Press (books@hobart.com). The dump was created by data.dump() and can be read back into S by data.restore(). The name of each S data set is the name of the data set used in the book. To " ], "weight": 5 }, "qualities": { "NumberOfInstances": 8641, "NumberOfFeatures": 5, "NumberOfClasses": 0, "NumberOfMissingValues": 0, "NumberOfInstancesWithMissingValues": 0, "NumberOfNumericFeatures": 4, "NumberOfSymbolicFeatures": 1, "MinorityClassPercentage": null, "MinorityClassSize": null, "NumberOfBinaryFeatures": 1, "PercentageOfBinaryFeatures": 20, "PercentageOfInstancesWithMissingValues": 0, "AutoCorrelation": 0.9859953703703703, "PercentageOfMissingValues": 0, "Dimensionality": 0.0005786367318597385, "PercentageOfNumericFeatures": 80, "MajorityClassPercentage": null, "PercentageOfSymbolicFeatures": 20, "MajorityClassSize": null }, "tags": [ { "uploader": "38960", "tag": "Computer Systems" }, { "uploader": "38960", "tag": "Machine Learning" } ], "features": [ { "name": "track", "index": "4", "type": "numeric", "distinct": "40", "missing": "0", "target": "1", "min": "1", "max": "40", "mean": "17", "stdev": "12" }, { "name": "northing", "index": "0", "type": "numeric", "distinct": "7011", "missing": "0", "min": "0", "max": "4", "mean": "2", "stdev": "1" }, { "name": "easting", "index": "1", "type": "numeric", "distinct": "6069", "missing": "0", "min": "0", "max": "2", "mean": "1", "stdev": "0" }, { "name": "resistivity", "index": "2", "type": "numeric", "distinct": "5726", "missing": "0", "min": "1", "max": "166", "mean": "51", "stdev": "29" }, { "name": "isns", "index": "3", "type": "nominal", "distinct": "2", "missing": "0", "distr": [] } ], "nr_of_issues": 0, "nr_of_downvotes": 0, "nr_of_likes": 0, "nr_of_downloads": 0, "total_downloads": 0, "reach": 0, "reuse": 0, "impact_of_reuse": 0, "reach_of_reuse": 0, "impact": 0 }