Data
year

year

active ARFF See source Visibility: public Uploaded 16-06-2022 by Leo Grin
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Dataset used in the tabular data benchmark https://github.com/LeoGrin/tabular-benchmark, transformed in the same way. This dataset belongs to the "regression on numerical features" benchmark. Original source: https://archive.ics.uci.edu/ml/datasets/yearpredictionmsd Please give credit to the original source if you use this dataset.

91 features

year (target)numeric89 unique values
0 missing
1numeric454399 unique values
0 missing
2numeric507151 unique values
0 missing
3numeric503593 unique values
0 missing
4numeric488390 unique values
0 missing
5numeric498032 unique values
0 missing
6numeric484700 unique values
0 missing
7numeric488214 unique values
0 missing
8numeric467285 unique values
0 missing
9numeric478011 unique values
0 missing
10numeric461540 unique values
0 missing
11numeric433386 unique values
0 missing
12numeric469592 unique values
0 missing
13numeric494241 unique values
0 missing
14numeric514787 unique values
0 missing
15numeric514731 unique values
0 missing
16numeric514613 unique values
0 missing
17numeric514069 unique values
0 missing
18numeric514245 unique values
0 missing
19numeric513575 unique values
0 missing
20numeric513401 unique values
0 missing
21numeric512721 unique values
0 missing
22numeric512263 unique values
0 missing
23numeric512094 unique values
0 missing
24numeric511668 unique values
0 missing
25numeric510366 unique values
0 missing
26numeric514307 unique values
0 missing
27numeric514135 unique values
0 missing
28numeric512572 unique values
0 missing
29numeric511923 unique values
0 missing
30numeric511289 unique values
0 missing
31numeric509822 unique values
0 missing
32numeric507878 unique values
0 missing
33numeric508308 unique values
0 missing
34numeric504082 unique values
0 missing
35numeric503077 unique values
0 missing
36numeric510326 unique values
0 missing
37numeric513698 unique values
0 missing
38numeric513990 unique values
0 missing
39numeric513031 unique values
0 missing
40numeric512659 unique values
0 missing
41numeric510656 unique values
0 missing
42numeric510732 unique values
0 missing
43numeric507489 unique values
0 missing
44numeric502685 unique values
0 missing
45numeric503671 unique values
0 missing
46numeric505446 unique values
0 missing
47numeric513997 unique values
0 missing
48numeric513158 unique values
0 missing
49numeric512379 unique values
0 missing
50numeric510928 unique values
0 missing
51numeric510099 unique values
0 missing
52numeric508689 unique values
0 missing
53numeric507247 unique values
0 missing
54numeric508859 unique values
0 missing
55numeric505285 unique values
0 missing
56numeric513202 unique values
0 missing
57numeric513389 unique values
0 missing
58numeric512908 unique values
0 missing
59numeric512085 unique values
0 missing
60numeric511445 unique values
0 missing
61numeric506203 unique values
0 missing
62numeric505135 unique values
0 missing
63numeric501812 unique values
0 missing
64numeric513358 unique values
0 missing
65numeric512811 unique values
0 missing
66numeric510855 unique values
0 missing
67numeric510408 unique values
0 missing
68numeric509554 unique values
0 missing
69numeric510078 unique values
0 missing
70numeric500977 unique values
0 missing
71numeric512842 unique values
0 missing
72numeric512786 unique values
0 missing
73numeric511620 unique values
0 missing
74numeric507447 unique values
0 missing
75numeric507582 unique values
0 missing
76numeric495322 unique values
0 missing
77numeric512987 unique values
0 missing
78numeric511838 unique values
0 missing
79numeric512034 unique values
0 missing
80numeric511103 unique values
0 missing
81numeric498041 unique values
0 missing
82numeric512130 unique values
0 missing
83numeric510975 unique values
0 missing
84numeric509474 unique values
0 missing
85numeric486924 unique values
0 missing
86numeric510656 unique values
0 missing
87numeric512167 unique values
0 missing
88numeric480095 unique values
0 missing
89numeric512014 unique values
0 missing
90numeric491623 unique values
0 missing

19 properties

515345
Number of instances (rows) of the dataset.
91
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
91
Number of numeric attributes.
0
Number of nominal attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
-1.79
Average class difference between consecutive instances.
100
Percentage of numeric attributes.
0
Number of attributes divided by the number of instances.
0
Percentage of nominal attributes.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.
0
Number of binary attributes.

1 tasks

0 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: root_mean_squared_error - target_feature: year
Define a new task