{ "data_id": "43837", "name": "New-Delhi-Rental-Listings", "exact_name": "New-Delhi-Rental-Listings", "version": 1, "version_label": "v1.0", "description": "Context\nThe dataset is from a rental price prediction project I did. Includes different types of properties (Apartments, Independent floors, Independent houses, Villas etc.)\nIt contains 12000 rental listings from a popular real estate website. It can be used for rental prediction projects, analysis of areas of affluence etc.\nContent\nThe dataset multiple quantitative, categorical and co-ordinate features including :\n\nData about the houses : \nsizesqft, \npropertyType,\nbedrooms,\nData about the locality of the house :\nlatitude,\nlongitude,\nlocalityName,\nsuburbName,\ncityName,\nAsking Rent :\nprice,\nProperty agency :\ncompanyName,\nDistance to closest landmarks (geodesic distance, not driving-road distance) :\nclosestmterostationkm,\nAPdistkm (Indira Gandhi International Airport),\nAiimsdistkm (All India Institute of Medical Science - major government hospital),\nNDRLWdist_km (New Delhi Railway Station), \n\nHeatmap of Data\nRed Vmax for monthly rent of Rs. 2lakh\/mo and above.", "format": "arff", "uploader": "Elif Ceren Gok", "uploader_id": 30125, "visibility": "public", "creator": null, "contributor": null, "date": "2022-03-24 15:32:57", "update_comment": null, "last_update": "2022-03-24 15:32:57", "licence": "CC0: Public Domain", "status": "active", "error_message": null, "url": "https:\/\/www.openml.org\/data\/download\/22102662\/dataset", "default_target_attribute": null, "row_id_attribute": null, "ignore_attribute": null, "runs": 0, "suggest": { "input": [ "New-Delhi-Rental-Listings", "Context The dataset is from a rental price prediction project I did. Includes different types of properties (Apartments, Independent floors, Independent houses, Villas etc.) It contains 12000 rental listings from a popular real estate website. It can be used for rental prediction projects, analysis of areas of affluence etc. Content The dataset multiple quantitative, categorical and co-ordinate features including : Data about the houses : sizesqft, propertyType, bedrooms, Data about the locality " ], "weight": 5 }, "qualities": { "NumberOfInstances": 17890, "NumberOfFeatures": 15, "NumberOfClasses": null, "NumberOfMissingValues": 0, "NumberOfInstancesWithMissingValues": 0, "NumberOfNumericFeatures": 10, "NumberOfSymbolicFeatures": 0, "Dimensionality": 0.0008384572386808273, "PercentageOfNumericFeatures": 66.66666666666666, "MajorityClassPercentage": null, "PercentageOfSymbolicFeatures": 0, "MajorityClassSize": null, "MinorityClassPercentage": null, "MinorityClassSize": null, "NumberOfBinaryFeatures": 0, "PercentageOfBinaryFeatures": 0, "PercentageOfInstancesWithMissingValues": 0, "AutoCorrelation": null, "PercentageOfMissingValues": 0 }, "tags": [ { "uploader": "38960", "tag": "Machine Learning" }, { "uploader": "38960", "tag": "Statistics" } ], "features": [ { "name": "Unnamed:_0", "index": "0", "type": "numeric", "distinct": "17890", "missing": "0", "min": "0", "max": "17889", "mean": "8945", "stdev": "5165" }, { "name": "size_sq_ft", "index": "1", "type": "numeric", "distinct": "700", "missing": "0", "min": "100", "max": "16521", "mean": "1176", "stdev": "874" }, { "name": "propertyType", "index": "2", "type": "string", "distinct": "4", "missing": "0" }, { "name": "bedrooms", "index": "3", "type": "numeric", "distinct": "12", "missing": "0", "min": "1", "max": "15", "mean": "2", "stdev": "1" }, { "name": "latitude", "index": "4", "type": "numeric", "distinct": "8767", "missing": "0", "min": "19", "max": "29", "mean": "29", "stdev": "0" }, { "name": "longitude", "index": "5", "type": "numeric", "distinct": "7651", "missing": "0", "min": "73", "max": "80", "mean": "77", "stdev": "0" }, { "name": "localityName", "index": "6", "type": "string", "distinct": "781", "missing": "0" }, { "name": "suburbName", "index": "7", "type": "string", "distinct": "12", "missing": "0" }, { "name": "cityName", "index": "8", "type": "string", "distinct": "1", "missing": "0" }, { "name": "price", "index": "9", "type": "numeric", "distinct": "432", "missing": "0", "min": "1200", "max": "5885646", "mean": "33452", "stdev": "88021" }, { "name": "companyName", "index": "10", "type": "string", "distinct": "1387", "missing": "0" }, { "name": "closest_mtero_station_km", "index": "11", "type": "numeric", "distinct": "9765", "missing": "0", "min": "0", "max": "1096", "mean": "1", "stdev": "8" }, { "name": "AP_dist_km", "index": "12", "type": "numeric", "distinct": "9765", "missing": "0", "min": "2", "max": "1110", "mean": "14", "stdev": "11" }, { "name": "Aiims_dist_km", "index": "13", "type": "numeric", "distinct": "9765", "missing": "0", "min": "1", "max": "1116", "mean": "11", "stdev": "11" }, { "name": "NDRLW_dist_km", "index": "14", "type": "numeric", "distinct": "9765", "missing": "0", "min": "1", "max": "1124", "mean": "11", "stdev": "11" } ], "nr_of_issues": 0, "nr_of_downvotes": 0, "nr_of_likes": 0, "nr_of_downloads": 0, "total_downloads": 0, "reach": 0, "reuse": 0, "impact_of_reuse": 0, "reach_of_reuse": 0, "impact": 0 }