{ "data_id": "43739", "name": "Country_data", "exact_name": "Country_data", "version": 1, "version_label": "v1.0", "description": "Context\nThis dataset was a part of the assignment of my coursework.\nContent\nThe dataset contains 90+ columns describing different aspects of all countries like GDP, Population, Electricity-consumption and many more. Most of the fields are explained here (others are standard terms you can search for): link\nAcknowledgements\nThis dataset is taken from CIA\nInspiration\nGDP Prediction is the most important task here. Other tasks include the prediction of other fields. Since the dataset is small I want to see how much accuracy can be reached with this.", "format": "arff", "uploader": "Dustin Carrion", "uploader_id": 30123, "visibility": "public", "creator": null, "contributor": null, "date": "2022-03-24 07:45:48", "update_comment": null, "last_update": "2022-03-24 07:45:48", "licence": "CC0: Public Domain", "status": "active", "error_message": null, "url": "https:\/\/www.openml.org\/data\/download\/22102564\/dataset", "default_target_attribute": null, "row_id_attribute": null, "ignore_attribute": null, "runs": 0, "suggest": { "input": [ "Country_data", "Context This dataset was a part of the assignment of my coursework. Content The dataset contains 90+ columns describing different aspects of all countries like GDP, Population, Electricity-consumption and many more. Most of the fields are explained here (others are standard terms you can search for): link Acknowledgements This dataset is taken from CIA Inspiration GDP Prediction is the most important task here. Other tasks include the prediction of other fields. Since the dataset is small I want " ], "weight": 5 }, "qualities": { "NumberOfInstances": 197, "NumberOfFeatures": 80, "NumberOfClasses": null, "NumberOfMissingValues": 0, "NumberOfInstancesWithMissingValues": 0, "NumberOfNumericFeatures": 0, "NumberOfSymbolicFeatures": 0, "Dimensionality": 0.40609137055837563, "PercentageOfNumericFeatures": 0, "MajorityClassPercentage": null, "PercentageOfSymbolicFeatures": 0, "MajorityClassSize": null, "MinorityClassPercentage": null, "MinorityClassSize": null, "NumberOfBinaryFeatures": 0, "PercentageOfBinaryFeatures": 0, "PercentageOfInstancesWithMissingValues": 0, "AutoCorrelation": null, "PercentageOfMissingValues": 0 }, "tags": [ { "uploader": "38960", "tag": "Economics" }, { "uploader": "38960", "tag": "Machine Learning" } ], "features": [ { "name": "Country_Name", "index": "0", "type": "string", "distinct": "197", "missing": "0" }, { "name": "Country_Name.1", "index": "1", "type": "string", "distinct": "197", "missing": "0" }, { "name": "Country_Code", "index": "2", "type": "string", "distinct": "197", "missing": "0" }, { "name": "Government_Type", "index": "3", "type": "string", "distinct": "52", "missing": "0" }, { "name": "Capital_City", "index": "4", "type": "string", "distinct": "197", "missing": "0" }, { "name": "Date_of_Founding\/Independence", "index": "5", "type": "string", "distinct": "187", "missing": "0" }, { "name": "Latitude_of_Capital", "index": "6", "type": "string", "distinct": "195", "missing": "0" }, { "name": "Longitude_of_Capital", "index": "7", "type": "string", "distinct": "197", "missing": "0" }, { "name": "Telephones_-_fixed_lines", "index": "8", "type": "string", "distinct": "191", "missing": "0" }, { "name": "Telephones_-_mobile_cellular", "index": "9", "type": "string", "distinct": "195", "missing": "0" }, { "name": "Internet_users", "index": "10", "type": "string", "distinct": "191", "missing": "0" }, { "name": "Broadband_-_fixed_subscriptions", "index": "11", "type": "string", "distinct": "183", "missing": "0" }, { "name": "GDP_(purchasing_power_parity)", "index": "12", "type": "string", "distinct": "195", "missing": "0" }, { "name": "GDP_-_real_growth_rate", "index": "13", "type": "string", "distinct": "86", "missing": "0" }, { "name": "GDP_-_per_capita_(PPP)", "index": "14", "type": "string", "distinct": "154", "missing": "0" }, { "name": "Gross_national_saving", "index": "15", "type": "string", "distinct": "146", "missing": "0" }, { "name": "Industrial_production_growth_rate", "index": "16", "type": "string", "distinct": "108", "missing": "0" }, { "name": "Labor_force", "index": "17", "type": "string", "distinct": "191", "missing": "0" }, { "name": "Unemployment_rate", "index": "18", "type": "string", "distinct": "119", "missing": "0" }, { "name": "Distribution_of_family_income_-_Gini_index", "index": "19", "type": "string", "distinct": "119", "missing": "0" }, { "name": "Taxes_and_other_revenues", "index": "20", "type": "string", "distinct": "153", "missing": "0" }, { "name": "Budget_surplus_(+)_or_deficit_(-)", "index": "21", "type": "string", "distinct": "104", "missing": "0" }, { "name": "Public_debt", "index": "22", "type": "string", "distinct": "171", "missing": "0" }, { "name": "Inflation_rate_(consumer_prices)", "index": "23", "type": "string", "distinct": "93", "missing": "0" }, { "name": "Central_bank_discount_rate", "index": "24", "type": "string", "distinct": "72", "missing": "0" }, { "name": "Commercial_bank_prime_lending_rate", "index": "25", "type": "string", "distinct": "160", "missing": "0" }, { "name": "Stock_of_narrow_money", "index": "26", "type": "string", "distinct": "182", "missing": "0" }, { "name": "Stock_of_broad_money", "index": "27", "type": "string", "distinct": "183", "missing": "0" }, { "name": "Stock_of_domestic_credit", "index": "28", "type": "string", "distinct": "182", "missing": "0" }, { "name": "Market_value_of_publicly_traded_shares", "index": "29", "type": "string", "distinct": "117", "missing": "0" }, { "name": "Current_account_balance", "index": "30", "type": "string", "distinct": "187", "missing": "0" }, { "name": "Exports", "index": "31", "type": "string", "distinct": "195", "missing": "0" }, { "name": "Imports", "index": "32", "type": "string", "distinct": "194", "missing": "0" }, { "name": "Reserves_of_foreign_exchange_and_gold", "index": "33", "type": "string", "distinct": "184", "missing": "0" }, { "name": "Debt_-_external", "index": "34", "type": "string", "distinct": "189", "missing": "0" }, { "name": "Stock_of_direct_foreign_investment_-_at_home", "index": "35", "type": "string", "distinct": "133", "missing": "0" }, { "name": "Stock_of_direct_foreign_investment_-_abroad", "index": "36", "type": "string", "distinct": "115", "missing": "0" }, { "name": "Electricity_-_production", "index": "37", "type": "string", "distinct": "188", "missing": "0" }, { "name": "Electricity_-_consumption", "index": "38", "type": "string", "distinct": "190", "missing": "0" }, { "name": "Electricity_-_exports", "index": "39", "type": "string", "distinct": "94", "missing": "0" }, { "name": "Electricity_-_imports", "index": "40", "type": "string", "distinct": "113", "missing": "0" }, { "name": "Electricity_-_installed_generating_capacity", "index": "41", "type": "string", "distinct": "191", "missing": "0" }, { "name": "Electricity_-_from_fossil_fuels", "index": "42", "type": "string", "distinct": "83", "missing": "0" }, { "name": "Electricity_-_from_nuclear_fuels", "index": "43", "type": "string", "distinct": "19", "missing": "0" }, { "name": "Electricity_-_from_hydroelectric_plants", "index": "44", "type": "string", "distinct": "69", "missing": "0" }, { "name": "Electricity_-_from_other_renewable_sources", "index": "45", "type": "string", "distinct": "42", "missing": "0" }, { "name": "Crude_oil_-_production", "index": "46", "type": "string", "distinct": "89", "missing": "0" }, { "name": "Crude_oil_-_exports", "index": "47", "type": "string", "distinct": "81", "missing": "0" }, { "name": "Crude_oil_-_imports", "index": "48", "type": "string", "distinct": "83", "missing": "0" }, { "name": "Crude_oil_-_proved_reserves", "index": "49", "type": "string", "distinct": "91", "missing": "0" }, { "name": "Refined_petroleum_products_-_production", "index": "50", "type": "string", "distinct": "109", "missing": "0" }, { "name": "Refined_petroleum_products_-_consumption", "index": "51", "type": "string", "distinct": "152", "missing": "0" }, { "name": "Refined_petroleum_products_-_exports", "index": "52", "type": "string", "distinct": "118", "missing": "0" }, { "name": "Refined_petroleum_products_-_imports", "index": "53", "type": "string", "distinct": "185", "missing": "0" }, { "name": "Natural_gas_-_production", "index": "54", "type": "string", "distinct": "90", "missing": "0" }, { "name": "Natural_gas_-_consumption", "index": "55", "type": "string", "distinct": "103", "missing": "0" }, { "name": "Natural_gas_-_exports", "index": "56", "type": "string", "distinct": "55", "missing": "0" }, { "name": "Natural_gas_-_imports", "index": "57", "type": "string", "distinct": "74", "missing": "0" }, { "name": "Natural_gas_-_proved_reserves", "index": "58", "type": "string", "distinct": "93", "missing": "0" }, { "name": "Carbon_dioxide_emissions_from_consumption_of_energy", "index": "59", "type": "string", "distinct": "189", "missing": "0" }, { "name": "Area", "index": "60", "type": "string", "distinct": "196", "missing": "0" }, { "name": "Military_expenditures", "index": "61", "type": "string", "distinct": "125", "missing": "0" }, { "name": "Population", "index": "62", "type": "string", "distinct": "196", "missing": "0" }, { "name": "Median_age", "index": "63", "type": "string", "distinct": "145", "missing": "0" }, { "name": "Population_growth_rate", "index": "64", "type": "string", "distinct": "161", "missing": "0" }, { "name": "Birth_rate", "index": "65", "type": "string", "distinct": "143", "missing": "0" }, { "name": "Death_rate", "index": "66", "type": "string", "distinct": "85", "missing": "0" }, { "name": "Net_migration_rate", "index": "67", "type": "string", "distinct": "107", "missing": "0" }, { "name": "Maternal_mortality_rate", "index": "68", "type": "string", "distinct": "113", "missing": "0" }, { "name": "Infant_mortality_rate", "index": "69", "type": "string", "distinct": "156", "missing": "0" }, { "name": "Life_expectancy_at_birth", "index": "70", "type": "string", "distinct": "128", "missing": "0" }, { "name": "Total_fertility_rate", "index": "71", "type": "string", "distinct": "137", "missing": "0" }, { "name": "Obesity_-_adult_prevalence_rate", "index": "72", "type": "string", "distinct": "141", "missing": "0" }, { "name": "Children_under_the_age_of_5_years_underweight", "index": "73", "type": "string", "distinct": "102", "missing": "0" }, { "name": "Education_expenditures", "index": "74", "type": "string", "distinct": "63", "missing": "0" }, { "name": "Unemployment,_youth_ages_15-24", "index": "75", "type": "string", "distinct": "131", "missing": "0" }, { "name": "Airports", "index": "76", "type": "string", "distinct": "118", "missing": "0" }, { "name": "Railways", "index": "77", "type": "string", "distinct": "131", "missing": "0" }, { "name": "Roadways", "index": "78", "type": "string", "distinct": "181", "missing": "0" }, { "name": "Merchant_marine", "index": "79", "type": "string", "distinct": "126", "missing": "0" } ], "nr_of_issues": 0, "nr_of_downvotes": 0, "nr_of_likes": 0, "nr_of_downloads": 0, "total_downloads": 0, "reach": 0, "reuse": 0, "impact_of_reuse": 0, "reach_of_reuse": 0, "impact": 0 }