{ "data_id": "43718", "name": "Bank-Marketing-Dataset", "exact_name": "Bank-Marketing-Dataset", "version": 1, "version_label": "v1.0", "description": "Context\nFind the best strategies to improve for the next marketing campaign. How can the financial institution have a greater effectiveness for future marketing campaigns? In order to answer this, we have to analyze the last marketing campaign the bank performed and identify the patterns that will help us find conclusions in order to develop future strategies.\nSource\n[Moro et al., 2014] S. Moro, P. Cortez and P. Rita. A Data-Driven Approach to Predict the Success of Bank Telemarketing. Decision Support Systems, Elsevier, 62:22-31, June 2014", "format": "arff", "uploader": "Dustin Carrion", "uploader_id": 30123, "visibility": "public", "creator": null, "contributor": null, "date": "2022-03-24 07:32:05", "update_comment": null, "last_update": "2022-03-24 07:32:05", "licence": "CC0: Public Domain", "status": "active", "error_message": null, "url": "https:\/\/www.openml.org\/data\/download\/22102543\/dataset", "default_target_attribute": null, "row_id_attribute": null, "ignore_attribute": null, "runs": 0, "suggest": { "input": [ "Bank-Marketing-Dataset", "Context Find the best strategies to improve for the next marketing campaign. How can the financial institution have a greater effectiveness for future marketing campaigns? In order to answer this, we have to analyze the last marketing campaign the bank performed and identify the patterns that will help us find conclusions in order to develop future strategies. Source [Moro et al., 2014] S. Moro, P. Cortez and P. Rita. A Data-Driven Approach to Predict the Success of Bank Telemarketing. Decision " ], "weight": 5 }, "qualities": { "NumberOfInstances": 11162, "NumberOfFeatures": 17, "NumberOfClasses": null, "NumberOfMissingValues": 0, "NumberOfInstancesWithMissingValues": 0, "NumberOfNumericFeatures": 7, "NumberOfSymbolicFeatures": 0, "MajorityClassSize": null, "MinorityClassPercentage": null, "MinorityClassSize": null, "NumberOfBinaryFeatures": 0, "PercentageOfBinaryFeatures": 0, "PercentageOfInstancesWithMissingValues": 0, "PercentageOfMissingValues": 0, "AutoCorrelation": null, "PercentageOfNumericFeatures": 41.17647058823529, "Dimensionality": 0.0015230245475721196, "PercentageOfSymbolicFeatures": 0, "MajorityClassPercentage": null }, "tags": [ { "uploader": "38960", "tag": "Economics" }, { "uploader": "38960", "tag": "Machine Learning" } ], "features": [ { "name": "age", "index": "0", "type": "numeric", "distinct": "76", "missing": "0", "min": "18", "max": "95", "mean": "41", "stdev": "12" }, { "name": "job", "index": "1", "type": "string", "distinct": "12", "missing": "0" }, { "name": "marital", "index": "2", "type": "string", "distinct": "3", "missing": "0" }, { "name": "education", "index": "3", "type": "string", "distinct": "4", "missing": "0" }, { "name": "default", "index": "4", "type": "string", "distinct": "2", "missing": "0" }, { "name": "balance", "index": "5", "type": "numeric", "distinct": "3805", "missing": "0", "min": "-6847", "max": "81204", "mean": "1529", "stdev": "3225" }, { "name": "housing", "index": "6", "type": "string", "distinct": "2", "missing": "0" }, { "name": "loan", "index": "7", "type": "string", "distinct": "2", "missing": "0" }, { "name": "contact", "index": "8", "type": "string", "distinct": "3", "missing": "0" }, { "name": "day", "index": "9", "type": "numeric", "distinct": "31", "missing": "0", "min": "1", "max": "31", "mean": "16", "stdev": "8" }, { "name": "month", "index": "10", "type": "string", "distinct": "12", "missing": "0" }, { "name": "duration", "index": "11", "type": "numeric", "distinct": "1428", "missing": "0", "min": "2", "max": "3881", "mean": "372", "stdev": "347" }, { "name": "campaign", "index": "12", "type": "numeric", "distinct": "36", "missing": "0", "min": "1", "max": "63", "mean": "3", "stdev": "3" }, { "name": "pdays", "index": "13", "type": "numeric", "distinct": "472", "missing": "0", "min": "-1", "max": "854", "mean": "51", "stdev": "109" }, { "name": "previous", "index": "14", "type": "numeric", "distinct": "34", "missing": "0", "min": "0", "max": "58", "mean": "1", "stdev": "2" }, { "name": "poutcome", "index": "15", "type": "string", "distinct": "4", "missing": "0" }, { "name": "deposit", "index": "16", "type": "string", "distinct": "2", "missing": "0" } ], "nr_of_issues": 0, "nr_of_downvotes": 0, "nr_of_likes": 1, "nr_of_downloads": 1, "total_downloads": 1, "reach": 2, "reuse": 0, "impact_of_reuse": 0, "reach_of_reuse": 0, "impact": 0 }