Data
Uber-and-Lyft-Dataset-Boston-MA

Uber-and-Lyft-Dataset-Boston-MA

active ARFF CC0: Public Domain Visibility: public Uploaded 24-03-2022 by Dustin Carrion
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Uber vs Lyft This is a very beginner-friendly dataset. It does contain a lot of NA values. It is a good dataset if you want to use a Linear Regression Model to see the pattern between different predectors such as hour and price. A really amazing part of this dataset is that I have included the corresponding weather data for that hour with a short summary of the weather. Other important factors are temperature, wind, and sunset.

56 features

id (ignore)string693071 unique values
0 missing
timestampnumeric36179 unique values
0 missing
hournumeric24 unique values
0 missing
daynumeric17 unique values
0 missing
monthnumeric2 unique values
0 missing
datetimestring31350 unique values
0 missing
timezonestring1 unique values
0 missing
sourcestring12 unique values
0 missing
destinationstring12 unique values
0 missing
cab_typestring2 unique values
0 missing
product_idstring13 unique values
0 missing
namestring13 unique values
0 missing
pricenumeric147 unique values
55095 missing
distancenumeric549 unique values
0 missing
surge_multipliernumeric7 unique values
0 missing
latitudenumeric11 unique values
0 missing
longitudenumeric12 unique values
0 missing
temperaturenumeric308 unique values
0 missing
apparentTemperaturenumeric319 unique values
0 missing
short_summarystring9 unique values
0 missing
long_summarystring11 unique values
0 missing
precipIntensitynumeric63 unique values
0 missing
precipProbabilitynumeric29 unique values
0 missing
humiditynumeric51 unique values
0 missing
windSpeednumeric291 unique values
0 missing
windGustnumeric286 unique values
0 missing
windGustTimenumeric25 unique values
0 missing
visibilitynumeric227 unique values
0 missing
temperatureHighnumeric129 unique values
0 missing
temperatureHighTimenumeric23 unique values
0 missing
temperatureLownumeric133 unique values
0 missing
temperatureLowTimenumeric31 unique values
0 missing
apparentTemperatureHighnumeric124 unique values
0 missing
apparentTemperatureHighTimenumeric27 unique values
0 missing
apparentTemperatureLownumeric136 unique values
0 missing
apparentTemperatureLowTimenumeric32 unique values
0 missing
iconstring7 unique values
0 missing
dewPointnumeric313 unique values
0 missing
pressurenumeric316 unique values
0 missing
windBearingnumeric195 unique values
0 missing
cloudCovernumeric83 unique values
0 missing
uvIndexnumeric3 unique values
0 missing
visibility.1numeric227 unique values
0 missing
ozonenumeric274 unique values
0 missing
sunriseTimenumeric110 unique values
0 missing
sunsetTimenumeric114 unique values
0 missing
moonPhasenumeric18 unique values
0 missing
precipIntensityMaxnumeric65 unique values
0 missing
uvIndexTimenumeric20 unique values
0 missing
temperatureMinnumeric131 unique values
0 missing
temperatureMinTimenumeric25 unique values
0 missing
temperatureMaxnumeric128 unique values
0 missing
temperatureMaxTimenumeric23 unique values
0 missing
apparentTemperatureMinnumeric137 unique values
0 missing
apparentTemperatureMinTimenumeric29 unique values
0 missing
apparentTemperatureMaxnumeric125 unique values
0 missing
apparentTemperatureMaxTimenumeric27 unique values
0 missing

19 properties

693071
Number of instances (rows) of the dataset.
56
Number of attributes (columns) of the dataset.
Number of distinct values of the target attribute (if it is nominal).
55095
Number of missing values in the dataset.
55095
Number of instances with at least one value missing.
46
Number of numeric attributes.
0
Number of nominal attributes.
0
Percentage of binary attributes.
7.95
Percentage of instances having missing values.
0.14
Percentage of missing values.
Average class difference between consecutive instances.
82.14
Percentage of numeric attributes.
0
Number of attributes divided by the number of instances.
0
Percentage of nominal attributes.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.
0
Number of binary attributes.

0 tasks

Define a new task