{ "data_id": "43681", "name": "Predicting-Critical-Heat-Flux", "exact_name": "Predicting-Critical-Heat-Flux", "version": 2, "version_label": "v1.0", "description": "Context\nThis dataset was prepared for the journal article entitled \"On the prediction of critical heat flux using a physics-informed machine learning-aided framework\" (doi: 10.1016\/j.applthermaleng.2019.114540). The dataset contains processed and compiled records of experimental critical heat flux and boundary conditions used for the work presented in the article. \nAcknowledgements\nZhao, Xingang (2020), Data for: On the prediction of critical heat flux using a physics-informed machine learning-aided framework, Mendeley Data, V1, doi: 10.17632\/5p5h37tyv7.1", "format": "arff", "uploader": "Dustin Carrion", "uploader_id": 30123, "visibility": "public", "creator": null, "contributor": null, "date": "2022-03-24 07:10:38", "update_comment": null, "last_update": "2022-03-24 07:10:38", "licence": "Attribution 4.0 International (CC BY 4.0)", "status": "active", "error_message": null, "url": "https:\/\/www.openml.org\/data\/download\/22102506\/dataset", "default_target_attribute": null, "row_id_attribute": null, "ignore_attribute": "\"id\"", "runs": 0, "suggest": { "input": [ "Predicting-Critical-Heat-Flux", "Context This dataset was prepared for the journal article entitled \"On the prediction of critical heat flux using a physics-informed machine learning-aided framework\" (doi: 10.1016\/j.applthermaleng.2019.114540). The dataset contains processed and compiled records of experimental critical heat flux and boundary conditions used for the work presented in the article. Acknowledgements Zhao, Xingang (2020), Data for: On the prediction of critical heat flux using a physics-informed machine learning-ai " ], "weight": 5 }, "qualities": { "NumberOfInstances": 1865, "NumberOfFeatures": 9, "NumberOfClasses": null, "NumberOfMissingValues": 0, "NumberOfInstancesWithMissingValues": 0, "NumberOfNumericFeatures": 7, "NumberOfSymbolicFeatures": 0, "Dimensionality": 0.00482573726541555, "PercentageOfNumericFeatures": 77.77777777777779, "MajorityClassPercentage": null, "PercentageOfSymbolicFeatures": 0, "MajorityClassSize": null, "MinorityClassPercentage": null, "MinorityClassSize": null, "NumberOfBinaryFeatures": 0, "PercentageOfBinaryFeatures": 0, "PercentageOfInstancesWithMissingValues": 0, "AutoCorrelation": null, "PercentageOfMissingValues": 0 }, "tags": [ { "uploader": "38960", "tag": "Chemistry" }, { "uploader": "38960", "tag": "Life Science" } ], "features": [ { "name": "id", "index": "0", "type": "numeric", "distinct": "1865", "missing": "0", "ignore": "1", "min": "1", "max": "1865", "mean": "933", "stdev": "539" }, { "name": "author", "index": "1", "type": "string", "distinct": "10", "missing": "0" }, { "name": "geometry", "index": "2", "type": "string", "distinct": "3", "missing": "0" }, { "name": "pressure_[MPa]", "index": "3", "type": "numeric", "distinct": "114", "missing": "0", "min": "0", "max": "21", "mean": "10", "stdev": "4" }, { "name": "mass_flux_[kg\/m2-s]", "index": "4", "type": "numeric", "distinct": "578", "missing": "0", "min": "0", "max": "7975", "mean": "2863", "stdev": "1656" }, { "name": "x_e_out_[-]", "index": "5", "type": "numeric", "distinct": "1360", "missing": "0", "min": "-1", "max": "0", "mean": "0", "stdev": "0" }, { "name": "D_e_[mm]", "index": "6", "type": "numeric", "distinct": "36", "missing": "0", "min": "1", "max": "38", "mean": "9", "stdev": "6" }, { "name": "D_h_[mm]", "index": "7", "type": "numeric", "distinct": "41", "missing": "0", "min": "1", "max": "120", "mean": "16", "stdev": "21" }, { "name": "length_[mm]", "index": "8", "type": "numeric", "distinct": "54", "missing": "0", "min": "10", "max": "3048", "mean": "911", "stdev": "727" }, { "name": "chf_exp_[MW\/m2]", "index": "9", "type": "numeric", "distinct": "109", "missing": "0", "min": "1", "max": "19", "mean": "4", "stdev": "2" } ], "nr_of_issues": 0, "nr_of_downvotes": 0, "nr_of_likes": 0, "nr_of_downloads": 0, "total_downloads": 0, "reach": 0, "reuse": 0, "impact_of_reuse": 0, "reach_of_reuse": 0, "impact": 0 }