{ "data_id": "43535", "name": "The-Big-Five-European-soccer-leagues-data", "exact_name": "The-Big-Five-European-soccer-leagues-data", "version": 1, "version_label": "v1.0", "description": "Context\n\n5 countries (Tha major five soccer leagues).\n44269 games.\n25 seasons.\n226 teams.\n\nContent\nAll game scores of the big five European soccer leagues (England, Germany, Spain, Italy and France) for the 1995\/96 to 2019\/20 seasons.\nAcknowledgements\nThe construction of the dataset was made possible thanks to football.db\nWhat's football.db?\n A free open public domain football database scheme for use in any (programming) language e.g. uses datasets in (structured) text\n using the football.txt format.\n More [football.db Project Site ](http:\/\/openfootball.github.io)\n\nInspiration\nThis data set could help:\n + Analyse the evolution of football in the 5 major leagues over the last 25 years.\n + Prepare all kinds of dashboards on the games, seasons, teamsetc.\n + Analyze the differences between countries in terms of league level.\n + Identify patterns, schemes in the dataetc.\nHave fun!", "format": "arff", "uploader": "Onur Yildirim", "uploader_id": 30126, "visibility": "public", "creator": null, "contributor": null, "date": "2022-03-23 13:45:22", "update_comment": null, "last_update": "2022-03-23 13:45:22", "licence": "CC0: Public Domain", "status": "active", "error_message": null, "url": "https:\/\/www.openml.org\/data\/download\/22102360\/dataset", "default_target_attribute": null, "row_id_attribute": null, "ignore_attribute": null, "runs": 0, "suggest": { "input": [ "The-Big-Five-European-soccer-leagues-data", "Context 5 countries (Tha major five soccer leagues). 44269 games. 25 seasons. 226 teams. Content All game scores of the big five European soccer leagues (England, Germany, Spain, Italy and France) for the 1995\/96 to 2019\/20 seasons. Acknowledgements The construction of the dataset was made possible thanks to football.db What's football.db? A free open public domain football database scheme for use in any (programming) language e.g. uses datasets in (structured) text using the football.txt format " ], "weight": 5 }, "qualities": { "NumberOfInstances": 44269, "NumberOfFeatures": 15, "NumberOfClasses": null, "NumberOfMissingValues": 0, "NumberOfInstancesWithMissingValues": 0, "NumberOfNumericFeatures": 9, "NumberOfSymbolicFeatures": 0, "Dimensionality": 0.00033883756127312567, "PercentageOfNumericFeatures": 60, "MajorityClassPercentage": null, "PercentageOfSymbolicFeatures": 0, "MajorityClassSize": null, "MinorityClassPercentage": null, "MinorityClassSize": null, "NumberOfBinaryFeatures": 0, "PercentageOfBinaryFeatures": 0, "PercentageOfInstancesWithMissingValues": 0, "AutoCorrelation": null, "PercentageOfMissingValues": 0 }, "tags": [ { "uploader": "38960", "tag": "Computer Systems" }, { "uploader": "38960", "tag": "Machine Learning" } ], "features": [ { "name": "Round", "index": "0", "type": "numeric", "distinct": "42", "missing": "0", "min": "1", "max": "42", "mean": "19", "stdev": "11" }, { "name": "Date", "index": "1", "type": "string", "distinct": "4209", "missing": "0" }, { "name": "Team_1", "index": "2", "type": "string", "distinct": "226", "missing": "0" }, { "name": "FT", "index": "3", "type": "string", "distinct": "66", "missing": "0" }, { "name": "HT", "index": "4", "type": "string", "distinct": "33", "missing": "0" }, { "name": "Team_2", "index": "5", "type": "string", "distinct": "226", "missing": "0" }, { "name": "Year", "index": "6", "type": "numeric", "distinct": "25", "missing": "0", "min": "1995", "max": "2019", "mean": "2007", "stdev": "7" }, { "name": "Country", "index": "7", "type": "string", "distinct": "5", "missing": "0" }, { "name": "FT_Team_1", "index": "8", "type": "numeric", "distinct": "11", "missing": "0", "min": "0", "max": "10", "mean": "2", "stdev": "1" }, { "name": "FT_Team_2", "index": "9", "type": "numeric", "distinct": "10", "missing": "0", "min": "0", "max": "9", "mean": "1", "stdev": "1" }, { "name": "HT_Team_1", "index": "10", "type": "numeric", "distinct": "8", "missing": "0", "min": "0", "max": "7", "mean": "1", "stdev": "1" }, { "name": "HT_Team_2", "index": "11", "type": "numeric", "distinct": "7", "missing": "0", "min": "0", "max": "6", "mean": "0", "stdev": "1" }, { "name": "GGD", "index": "12", "type": "numeric", "distinct": "10", "missing": "0", "min": "0", "max": "9", "mean": "1", "stdev": "1" }, { "name": "Team_1_(pts)", "index": "13", "type": "numeric", "distinct": "3", "missing": "0", "min": "0", "max": "3", "mean": "2", "stdev": "1" }, { "name": "Team_2_(pts)", "index": "14", "type": "numeric", "distinct": "3", "missing": "0", "min": "0", "max": "3", "mean": "1", "stdev": "1" } ], "nr_of_issues": 0, "nr_of_downvotes": 0, "nr_of_likes": 0, "nr_of_downloads": 0, "total_downloads": 0, "reach": 0, "reuse": 0, "impact_of_reuse": 0, "reach_of_reuse": 0, "impact": 0 }