Data
Milan-Airbnb-Open-Data-(only-entire-apartments)

Milan-Airbnb-Open-Data-(only-entire-apartments)

active ARFF CC0: Public Domain Visibility: public Uploaded 23-03-2022 by Onur Yildirim
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Introduction The dataset contains all the entire apartments located in Milan (N = 9322). This public dataset is part of Airbnb, and the original source can be found on this website. Dataset Creation From the original dataset: 1) Nuisance variables were removed. 2) Variables were recoded in order to be clear and intuitive. 3) A series of dummy variables were created based on the services offered by each apartment (TV, WiFi, AirCondition, Wheelchairaccessible, Kitchen, Breakfast, Elevator, Heating, Washer, Iron, Hostgreetsyou, Paidparkingonpremises, Luggagedropoffallowed, Longtermstaysallowed, Doorman, Petsallowed, Smokingallowed, Suitableforevents, 24hourcheck_in).

61 features

Unnamed:_0numeric9322 unique values
0 missing
idnumeric9322 unique values
0 missing
host_idnumeric6215 unique values
0 missing
host_locationnumeric2 unique values
0 missing
host_response_timenumeric2 unique values
0 missing
host_response_ratenumeric52 unique values
0 missing
host_is_superhostnumeric2 unique values
0 missing
host_total_listings_countnumeric65 unique values
0 missing
host_has_profile_picnumeric2 unique values
0 missing
host_identity_verifiednumeric2 unique values
0 missing
neighbourhood_cleansednumeric9 unique values
0 missing
zipcodenumeric45 unique values
0 missing
latitudenumeric5205 unique values
0 missing
longitudenumeric6024 unique values
0 missing
room_typestring1 unique values
0 missing
accommodatesnumeric15 unique values
0 missing
bathroomsnumeric16 unique values
0 missing
bedroomsnumeric10 unique values
0 missing
bedsnumeric15 unique values
0 missing
bed_typenumeric5 unique values
0 missing
daily_pricenumeric301 unique values
0 missing
security_depositnumeric106 unique values
0 missing
cleaning_feenumeric97 unique values
0 missing
guests_includednumeric14 unique values
0 missing
extra_peoplenumeric63 unique values
0 missing
minimum_nightsnumeric37 unique values
0 missing
availability_30numeric31 unique values
0 missing
availability_60numeric61 unique values
0 missing
availability_90numeric91 unique values
0 missing
availability_365numeric366 unique values
0 missing
number_of_reviewsnumeric371 unique values
0 missing
review_scores_ratingnumeric48 unique values
0 missing
review_scores_accuracynumeric9 unique values
0 missing
review_scores_cleanlinessnumeric9 unique values
0 missing
review_scores_checkinnumeric8 unique values
0 missing
review_scores_communicationnumeric9 unique values
0 missing
review_scores_locationnumeric8 unique values
0 missing
review_scores_valuenumeric9 unique values
0 missing
instant_bookablenumeric2 unique values
0 missing
cancellation_policynumeric2 unique values
0 missing
require_guest_profile_picturenumeric2 unique values
0 missing
require_guest_phone_verificationnumeric2 unique values
0 missing
TVnumeric2 unique values
0 missing
WiFinumeric2 unique values
0 missing
Air_Conditionnumeric2 unique values
0 missing
Wheelchair_accessiblenumeric2 unique values
0 missing
Kitchennumeric2 unique values
0 missing
Breakfastnumeric2 unique values
0 missing
Elevatornumeric2 unique values
0 missing
Heatingnumeric2 unique values
0 missing
Washernumeric2 unique values
0 missing
Ironnumeric2 unique values
0 missing
Host_greets_younumeric2 unique values
0 missing
Paid_parking_on_premisesnumeric2 unique values
0 missing
Luggage_dropoff_allowednumeric2 unique values
0 missing
Long_term_stays_allowednumeric2 unique values
0 missing
Doormannumeric2 unique values
0 missing
Pets_allowednumeric2 unique values
0 missing
Smoking_allowednumeric2 unique values
0 missing
Suitable_for_eventsnumeric2 unique values
0 missing
24_hour_check_innumeric2 unique values
0 missing

19 properties

9322
Number of instances (rows) of the dataset.
61
Number of attributes (columns) of the dataset.
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
60
Number of numeric attributes.
0
Number of nominal attributes.
0.01
Number of attributes divided by the number of instances.
98.36
Percentage of numeric attributes.
Percentage of instances belonging to the most frequent class.
0
Percentage of nominal attributes.
Number of instances belonging to the most frequent class.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.
0
Number of binary attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
Average class difference between consecutive instances.
0
Percentage of missing values.

0 tasks

Define a new task