{ "data_id": "43439", "name": "Medical-Appointment-No-Shows", "exact_name": "Medical-Appointment-No-Shows", "version": 1, "version_label": "v1.0", "description": "Context\nA person makes a doctor appointment, receives all the instructions and no-show. Who to blame? \nIf this help you studying or working, please dont forget to upvote :). Reference to Joni Hoppen and Aquarela Advanced Analytics Aquarela\nGreetings! \nContent\n110.527 medical appointments its 14 associated variables (characteristics). The most important one if the patient show-up or no-show to the appointment. Variable names are self-explanatory, if you have doubts, just let me know! \nscholarship variable means this concept = https:\/\/en.wikipedia.org\/wiki\/Bolsa_FamC3ADlia\n14 variables \nData Dictionary\n01 - PatientId\n\nIdentification of a patient\n\n02 - AppointmentID\n\nIdentification of each appointment\n\n03 - Gender\n\nMale or Female . Female is the greater proportion, woman takes way more care of they health in comparison to man.\n\n04 - DataMarcacaoConsulta\n\nThe day of the actuall appointment, when they have to visit the doctor.\n\n05 - DataAgendamento\n\nThe day someone called or registered the appointment, this is before appointment of course.\n\n06 - Age\n\nHow old is the patient.\n\n07 - Neighbourhood\n\nWhere the appointment takes place. \n\n08 - Scholarship\n\nTrue of False . Observation, this is a broad topic, consider reading this article https:\/\/en.wikipedia.org\/wiki\/Bolsa_FamC3ADlia \n\n09 - Hipertension\n\nTrue or False\n\n10 - Diabetes\n\nTrue or False\n\nAlcoholism\n\nTrue or False\n\nHandcap\n\nTrue or False\n\nSMS_received\n\n1 or more messages sent to the patient.\n\nNo-show\n\nTrue or False. \n\nInspiration\nWhat if that possible to predict someone to no-show an appointment?", "format": "arff", "uploader": "Dustin Carrion", "uploader_id": 30123, "visibility": "public", "creator": null, "contributor": null, "date": "2022-03-23 13:21:02", "update_comment": null, "last_update": "2022-03-23 13:21:02", "licence": "CC BY-NC-SA 4.0", "status": "active", "error_message": null, "url": "https:\/\/www.openml.org\/data\/download\/22102264\/dataset", "default_target_attribute": "No-show", "row_id_attribute": null, "ignore_attribute": "\"PatientId\"", "runs": 0, "suggest": { "input": [ "Medical-Appointment-No-Shows", "Context A person makes a doctor appointment, receives all the instructions and no-show. Who to blame? If this help you studying or working, please dont forget to upvote :). Reference to Joni Hoppen and Aquarela Advanced Analytics Aquarela Greetings! Content 110.527 medical appointments its 14 associated variables (characteristics). The most important one if the patient show-up or no-show to the appointment. Variable names are self-explanatory, if you have doubts, just let me know! scholarship va " ], "weight": 5 }, "qualities": { "NumberOfInstances": 110527, "NumberOfFeatures": 13, "NumberOfClasses": 2, "NumberOfMissingValues": 0, "NumberOfInstancesWithMissingValues": 0, "NumberOfNumericFeatures": 8, "NumberOfSymbolicFeatures": 0, "Dimensionality": 0.00011761831950564115, "PercentageOfNumericFeatures": 61.53846153846154, "MajorityClassPercentage": 79.8067440534892, "PercentageOfSymbolicFeatures": 0, "MajorityClassSize": 88208, "MinorityClassPercentage": 20.193255946510806, "MinorityClassSize": 22319, "NumberOfBinaryFeatures": 0, "PercentageOfBinaryFeatures": 0, "PercentageOfInstancesWithMissingValues": 0, "AutoCorrelation": 1, "PercentageOfMissingValues": 0 }, "tags": [ { "uploader": "38960", "tag": "Computer Systems" }, { "uploader": "38960", "tag": "Machine Learning" } ], "features": [ { "name": "No-show", "index": "13", "type": "string", "distinct": "2", "missing": "0", "target": "1" }, { "name": "PatientId", "index": "0", "type": "numeric", "distinct": "62299", "missing": "0", "ignore": "1", "min": "39218", "max": "2147483647", "mean": "2147483647", "stdev": "2147483647" }, { "name": "AppointmentID", "index": "1", "type": "numeric", "distinct": "110527", "missing": "0", "min": "5030230", "max": "5790484", "mean": "5675305", "stdev": "71296" }, { "name": "Gender", "index": "2", "type": "string", "distinct": "2", "missing": "0" }, { "name": "ScheduledDay", "index": "3", "type": "string", "distinct": "103549", "missing": "0" }, { "name": "AppointmentDay", "index": "4", "type": "string", "distinct": "27", "missing": "0" }, { "name": "Age", "index": "5", "type": "numeric", "distinct": "104", "missing": "0", "min": "-1", "max": "115", "mean": "37", "stdev": "23" }, { "name": "Neighbourhood", "index": "6", "type": "string", "distinct": "81", "missing": "0" }, { "name": "Scholarship", "index": "7", "type": "numeric", "distinct": "2", "missing": "0", "min": "0", "max": "1", "mean": "0", "stdev": "0" }, { "name": "Hipertension", "index": "8", "type": "numeric", "distinct": "2", "missing": "0", "min": "0", "max": "1", "mean": "0", "stdev": "0" }, { "name": "Diabetes", "index": "9", "type": "numeric", "distinct": "2", "missing": "0", "min": "0", "max": "1", "mean": "0", "stdev": "0" }, { "name": "Alcoholism", "index": "10", "type": "numeric", "distinct": "2", "missing": "0", "min": "0", "max": "1", "mean": "0", "stdev": "0" }, { "name": "Handcap", "index": "11", "type": "numeric", "distinct": "5", "missing": "0", "min": "0", "max": "4", "mean": "0", "stdev": "0" }, { "name": "SMS_received", "index": "12", "type": "numeric", "distinct": "2", "missing": "0", "min": "0", "max": "1", "mean": "0", "stdev": "0" } ], "nr_of_issues": 0, "nr_of_downvotes": 0, "nr_of_likes": 0, "nr_of_downloads": 0, "total_downloads": 0, "reach": 0, "reuse": 0, "impact_of_reuse": 0, "reach_of_reuse": 0, "impact": 0 }