Data
Chess-Position--Chess-Moves

Chess-Position--Chess-Moves

active ARFF GPL 2 Visibility: public Uploaded 23-03-2022 by Dustin Carrion
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • Computer Systems Machine Learning
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Context The objective of this dataset is to create a chess engine through machine learning. In this first part we will first predict the pieces to be moved depending on the position of the chessboard This is inspired by this research (https://pdfs.semanticscholar.org/28a9/fff7208256de548c273e96487d750137c31d.pdf) but by comparing several approaches and having the best performance The data used by this competition is a processed version of the dataset https://www.kaggle.com/milesh1/35-million-chess-games which Content The players are represented by the winning player and the losing player. The first 64 columns represent the 64 squares of the chessboard and each value corresponds to the piece which is on this square the unique values are as follows WR: Rook of wining player WB: Bishop of wining player WN: Knight of wining player WQ: Queen of wining player WK: King of wining player WP: Pawn of wining player LR : Rook of losing player LB : Bishop of losing player LN : Knight of losing player LQ : Queen of losing player LK : King of losing player LP : Pawn of losing player The next turn is the winner's turn so the output is the algebrical value of the box containing the piece to move A1 to H8 (64 classes)

66 features

A1string11 unique values
0 missing
B1string11 unique values
0 missing
C1string11 unique values
0 missing
D1string11 unique values
0 missing
E1string11 unique values
0 missing
F1string11 unique values
0 missing
G1string11 unique values
0 missing
H1string11 unique values
0 missing
A2string13 unique values
0 missing
B2string13 unique values
0 missing
C2string13 unique values
0 missing
D2string13 unique values
0 missing
E2string13 unique values
0 missing
F2string13 unique values
0 missing
G2string13 unique values
0 missing
H2string13 unique values
0 missing
A3string13 unique values
0 missing
B3string13 unique values
0 missing
C3string13 unique values
0 missing
D3string13 unique values
0 missing
E3string13 unique values
0 missing
F3string13 unique values
0 missing
G3string13 unique values
0 missing
H3string13 unique values
0 missing
A4string13 unique values
0 missing
B4string13 unique values
0 missing
C4string13 unique values
0 missing
D4string13 unique values
0 missing
E4string13 unique values
0 missing
F4string13 unique values
0 missing
G4string13 unique values
0 missing
H4string13 unique values
0 missing
A5string13 unique values
0 missing
B5string13 unique values
0 missing
C5string13 unique values
0 missing
D5string13 unique values
0 missing
E5string13 unique values
0 missing
F5string13 unique values
0 missing
G5string13 unique values
0 missing
H5string13 unique values
0 missing
A6string13 unique values
0 missing
B6string13 unique values
0 missing
C6string13 unique values
0 missing
D6string13 unique values
0 missing
E6string13 unique values
0 missing
F6string13 unique values
0 missing
G6string13 unique values
0 missing
H6string13 unique values
0 missing
A7string13 unique values
0 missing
B7string13 unique values
0 missing
C7string13 unique values
0 missing
D7string13 unique values
0 missing
E7string13 unique values
0 missing
F7string13 unique values
0 missing
G7string13 unique values
0 missing
H7string13 unique values
0 missing
A8string11 unique values
0 missing
B8string11 unique values
0 missing
C8string11 unique values
0 missing
D8string11 unique values
0 missing
E8string11 unique values
0 missing
F8string11 unique values
0 missing
G8string11 unique values
0 missing
H8string11 unique values
0 missing
MOVE_FROMstring64 unique values
0 missing
MOVE_TOstring64 unique values
0 missing

19 properties

2632753
Number of instances (rows) of the dataset.
66
Number of attributes (columns) of the dataset.
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
0
Number of numeric attributes.
0
Number of nominal attributes.
0
Number of attributes divided by the number of instances.
0
Percentage of numeric attributes.
Percentage of instances belonging to the most frequent class.
0
Percentage of nominal attributes.
Number of instances belonging to the most frequent class.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.
0
Number of binary attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
Average class difference between consecutive instances.
0
Percentage of missing values.

0 tasks

Define a new task