Data
Video-Game-Use-in-US-High-School-Students

Video-Game-Use-in-US-High-School-Students

active ARFF Database: Open Database, Contents: Database Contents Visibility: public Uploaded 23-03-2022 by Dustin Carrion
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Context This is a subset from the Monitoring the Future Survey of high school students. My focus in working on this is trying to understand the effect that technology use has on grades (GPA). Content The columns are labeled. Technology use (PC, videogame use, etc.) as well as Grades (GPA) are labeled accordingly. Acknowledgements This dataset is the result of Monitoring the Future, at the University of Michigan. Inspiration Is GPA affected by the use of technology?

24 features

CASEIDnumeric2202 unique values
0 missing
V1numeric1 unique values
0 missing
V3179_Gradesnumeric10 unique values
0 missing
V3208_Happynessnumeric4 unique values
0 missing
RESPONDENT_AGEnumeric3 unique values
0 missing
V3150_Gendernumeric3 unique values
0 missing
V3490_Hrsincomputernumeric10 unique values
0 missing
V3518_HrsInternetnumeric10 unique values
0 missing
V3519_VGnumeric10 unique values
0 missing
V3523Hrs_Textnumeric10 unique values
0 missing
V3524_HrstalkCellnumeric10 unique values
0 missing
V3527_HrsSocialNetnumeric10 unique values
0 missing
V3528_HrsVideoChatnumeric10 unique values
0 missing
Unnamed:_13numeric0 unique values
2202 missing
Unnamed:_14numeric0 unique values
2202 missing
Unnamed:_15string22 unique values
2180 missing
Unnamed:_16string21 unique values
2181 missing
Unnamed:_17string16 unique values
2186 missing
Unnamed:_18string15 unique values
2187 missing
Unnamed:_19string14 unique values
2188 missing
Unnamed:_20string14 unique values
2188 missing
Unnamed:_21string12 unique values
2190 missing
Unnamed:_22string12 unique values
2190 missing
Unnamed:_23string12 unique values
2190 missing

19 properties

2202
Number of instances (rows) of the dataset.
24
Number of attributes (columns) of the dataset.
Number of distinct values of the target attribute (if it is nominal).
24084
Number of missing values in the dataset.
2202
Number of instances with at least one value missing.
15
Number of numeric attributes.
0
Number of nominal attributes.
0
Percentage of binary attributes.
100
Percentage of instances having missing values.
45.57
Percentage of missing values.
Average class difference between consecutive instances.
62.5
Percentage of numeric attributes.
0.01
Number of attributes divided by the number of instances.
0
Percentage of nominal attributes.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.
0
Number of binary attributes.

0 tasks

Define a new task