{ "data_id": "43382", "name": "Drug-Classification", "exact_name": "Drug-Classification", "version": 1, "version_label": "v1.0", "description": "Context\nSince as a beginner in machine learning it would be a great opportunity to try some techniques to predict the outcome of the drugs that might be accurate for the patient. \nContent\nThe target feature is\n\nDrug type\n\nThe feature sets are:\n\nAge\nSex\nBlood Pressure Levels (BP)\nCholesterol Levels\nNa to Potassium Ration\n\nInspiration\nThe main problem here in not just the feature sets and target sets but also the approach that is taken in solving these types of problems as a beginner. So best of luck.", "format": "arff", "uploader": "Onur Yildirim", "uploader_id": 30126, "visibility": "public", "creator": null, "contributor": null, "date": "2022-03-23 12:51:57", "update_comment": null, "last_update": "2022-03-23 12:51:57", "licence": "CC0: Public Domain", "status": "active", "error_message": null, "url": "https:\/\/www.openml.org\/data\/download\/22102207\/dataset", "default_target_attribute": null, "row_id_attribute": null, "ignore_attribute": null, "runs": 0, "suggest": { "input": [ "Drug-Classification", "Context Since as a beginner in machine learning it would be a great opportunity to try some techniques to predict the outcome of the drugs that might be accurate for the patient. Content The target feature is Drug type The feature sets are: Age Sex Blood Pressure Levels (BP) Cholesterol Levels Na to Potassium Ration Inspiration The main problem here in not just the feature sets and target sets but also the approach that is taken in solving these types of problems as a beginner. So best of luck. " ], "weight": 5 }, "qualities": { "NumberOfInstances": 200, "NumberOfFeatures": 6, "NumberOfClasses": null, "NumberOfMissingValues": 0, "NumberOfInstancesWithMissingValues": 0, "NumberOfNumericFeatures": 2, "NumberOfSymbolicFeatures": 0, "Dimensionality": 0.03, "PercentageOfNumericFeatures": 33.33333333333333, "MajorityClassPercentage": null, "PercentageOfSymbolicFeatures": 0, "MajorityClassSize": null, "MinorityClassPercentage": null, "MinorityClassSize": null, "NumberOfBinaryFeatures": 0, "PercentageOfBinaryFeatures": 0, "PercentageOfInstancesWithMissingValues": 0, "AutoCorrelation": null, "PercentageOfMissingValues": 0 }, "tags": [ { "uploader": "38960", "tag": "Machine Learning" } ], "features": [ { "name": "Age", "index": "0", "type": "numeric", "distinct": "57", "missing": "0", "min": "15", "max": "74", "mean": "44", "stdev": "17" }, { "name": "Sex", "index": "1", "type": "string", "distinct": "2", "missing": "0" }, { "name": "BP", "index": "2", "type": "string", "distinct": "3", "missing": "0" }, { "name": "Cholesterol", "index": "3", "type": "string", "distinct": "2", "missing": "0" }, { "name": "Na_to_K", "index": "4", "type": "numeric", "distinct": "198", "missing": "0", "min": "6", "max": "38", "mean": "16", "stdev": "7" }, { "name": "Drug", "index": "5", "type": "string", "distinct": "5", "missing": "0" } ], "nr_of_issues": 0, "nr_of_downvotes": 0, "nr_of_likes": 0, "nr_of_downloads": 0, "total_downloads": 0, "reach": 0, "reuse": 0, "impact_of_reuse": 0, "reach_of_reuse": 0, "impact": 0 }