Data
Graph_Inference_Dataset

Graph_Inference_Dataset

active ARFF Publicly available Visibility: public Uploaded 15-03-2022 by Oleksandr Zadorozhnyi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • Computer Systems Machine Learning
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
//Add the description.md of the data file Graph_Inference_Dataset Goudet, Olivier, 2017, "Graph inference datasets. Replication Data for: "Learning Functional Causal Models with Generative Neural Networks"", [Link](https://doi.org/10.7910/DVN/UZMB69), Harvard Dataverse, V1, UNF:6:wrgpGhxTNPqE4R5S2cNcpg== [fileUNF] Graph datasets in csv format. Used in the article Learning Functional Causal Models with Generative Neural Networks. 1) File *_numdata.csv contain the data of around 20 variables connected in a graph without hidden variables. G2, G3, G4 and G5 refered to graph with 2, 3, 4 and 5 parents maximum for each node. Each file *_target.csv contains the ground truth of the graph with cause -> effect File beginning by "Big" are larger graphs with 100 variables. 2) Each file *_confounders_numdata.csv contain the data of around 20 variables connected in a graph. There are 3 hidden variables. Each file *_confounders_skeleton.csv contains the skeleton of the graph (including spurious links due to common hidden cause). Each file *_confounders_target.csv contains the ground truth of the graph with the direct visible cause -> effect. The task is to recover the direct visible links cause->effect while removing the spurious links of the skeleton (2017-08-24)

101 features

V0numeric500 unique values
0 missing
V1numeric500 unique values
0 missing
V2numeric500 unique values
0 missing
V3numeric500 unique values
0 missing
V4numeric500 unique values
0 missing
V5numeric500 unique values
0 missing
V6numeric500 unique values
0 missing
V7numeric500 unique values
0 missing
V8numeric500 unique values
0 missing
V9numeric500 unique values
0 missing
V10numeric500 unique values
0 missing
V11numeric500 unique values
0 missing
V12numeric499 unique values
0 missing
V13numeric500 unique values
0 missing
V14numeric500 unique values
0 missing
V15numeric500 unique values
0 missing
V16numeric500 unique values
0 missing
V17numeric500 unique values
0 missing
V18numeric500 unique values
0 missing
V19numeric500 unique values
0 missing
V20numeric500 unique values
0 missing
V21numeric499 unique values
0 missing
V22numeric500 unique values
0 missing
V23numeric500 unique values
0 missing
V24numeric500 unique values
0 missing
V25numeric499 unique values
0 missing
V26numeric500 unique values
0 missing
V27numeric500 unique values
0 missing
V28numeric500 unique values
0 missing
V29numeric500 unique values
0 missing
V30numeric500 unique values
0 missing
V31numeric500 unique values
0 missing
V32numeric499 unique values
0 missing
V33numeric500 unique values
0 missing
V34numeric500 unique values
0 missing
V35numeric500 unique values
0 missing
V36numeric500 unique values
0 missing
V37numeric500 unique values
0 missing
V38numeric499 unique values
0 missing
V39numeric500 unique values
0 missing
V40numeric500 unique values
0 missing
V41numeric500 unique values
0 missing
V42numeric500 unique values
0 missing
V43numeric500 unique values
0 missing
V44numeric500 unique values
0 missing
V45numeric500 unique values
0 missing
V46numeric500 unique values
0 missing
V47numeric500 unique values
0 missing
V48numeric500 unique values
0 missing
V49numeric500 unique values
0 missing
V50numeric499 unique values
0 missing
V51numeric499 unique values
0 missing
V52numeric500 unique values
0 missing
V53numeric500 unique values
0 missing
V54numeric500 unique values
0 missing
V55numeric500 unique values
0 missing
V56numeric500 unique values
0 missing
V57numeric500 unique values
0 missing
V58numeric500 unique values
0 missing
V59numeric500 unique values
0 missing
V60numeric499 unique values
0 missing
V61numeric500 unique values
0 missing
V62numeric500 unique values
0 missing
V63numeric500 unique values
0 missing
V64numeric500 unique values
0 missing
V65numeric500 unique values
0 missing
V66numeric500 unique values
0 missing
V67numeric500 unique values
0 missing
V68numeric500 unique values
0 missing
V69numeric500 unique values
0 missing
V70numeric500 unique values
0 missing
V71numeric499 unique values
0 missing
V72numeric500 unique values
0 missing
V73numeric500 unique values
0 missing
V74numeric500 unique values
0 missing
V75numeric500 unique values
0 missing
V76numeric500 unique values
0 missing
V77numeric500 unique values
0 missing
V78numeric500 unique values
0 missing
V79numeric500 unique values
0 missing
V80numeric500 unique values
0 missing
V81numeric500 unique values
0 missing
V82numeric500 unique values
0 missing
V83numeric500 unique values
0 missing
V84numeric499 unique values
0 missing
V85numeric500 unique values
0 missing
V86numeric500 unique values
0 missing
V87numeric499 unique values
0 missing
V88numeric500 unique values
0 missing
V89numeric500 unique values
0 missing
V90numeric500 unique values
0 missing
V91numeric500 unique values
0 missing
V92numeric500 unique values
0 missing
V93numeric500 unique values
0 missing
V94numeric500 unique values
0 missing
V95numeric499 unique values
0 missing
V96numeric500 unique values
0 missing
V97numeric500 unique values
0 missing
V98numeric500 unique values
0 missing
V99numeric499 unique values
0 missing
V100numeric500 unique values
0 missing

19 properties

500
Number of instances (rows) of the dataset.
101
Number of attributes (columns) of the dataset.
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
101
Number of numeric attributes.
0
Number of nominal attributes.
0.2
Number of attributes divided by the number of instances.
100
Percentage of numeric attributes.
Percentage of instances belonging to the most frequent class.
0
Percentage of nominal attributes.
Number of instances belonging to the most frequent class.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.
0
Number of binary attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
Average class difference between consecutive instances.
0
Percentage of missing values.

0 tasks

Define a new task