{ "data_id": "43157", "name": "insurance_dataset", "exact_name": "insurance_dataset", "version": 1, "version_label": null, "description": "**Dataset description**\n\nInsurance is a network for evaluating car insurance risks.\n\n\n**Format of the dataset**\n\n\nThe insurance data set contains the following 27 variables:\n\nGoodStudent (good student): a two-level factor with levels False and True.\n\nAge (age): a three-level factor with levels Adolescent, Adult and Senior.\n\nSocioEcon (socio-economic status): a four-level factor with levels Prole, Middle, UpperMiddle and Wealthy.\n\nRiskAversion (risk aversion): a four-level factor with levels Psychopath, Adventurous, Normal and Cautious.\n\nVehicleYear (vehicle age): a two-level factor with levels Current and older.\n\nThisCarDam (damage to this car): a four-level factor with levels None, Mild, Moderate and Severe.\n\nRuggedAuto (ruggedness of the car): a three-level factor with levels EggShell, Football and Tank.\n\nAccident (severity of the accident): a four-level factor with levels None, Mild, Moderate and Severe.\n\nMakeModel (car's model): a five-level factor with levels SportsCar, Economy, FamilySedan, Luxury and SuperLuxury.\n\nDrivQuality (driving quality): a three-level factor with levels Poor, Normal and Excellent.\n\nMileage (mileage): a four-level factor with levels FiveThou, TwentyThou, FiftyThou and Domino.\n\nAntilock (ABS): a two-level factor with levels False and True.\n\nDrivingSkill (driving skill): a three-level factor with levels SubStandard, Normal and Expert.\n\nSeniorTrain (senior training): a two-level factor with levels False and True.\n\nThisCarCost (costs for the insured car): a four-level factor with levels Thousand, TenThou, HundredThou and Million.\n\nTheft (theft): a two-level factor with levels False and True.\n\nCarValue (value of the car): a five-level factor with levels FiveThou, TenThou, TwentyThou, FiftyThou and Million.\n\nHomeBase (neighbourhood type): a four-level factor with levels Secure, City, Suburb and Rural.\n\nAntiTheft (anti-theft system): a two-level factor with levels False and True.\n\nPropCost (ratio of the cost for the two cars): a four-level factor with levels Thousand, TenThou, HundredThou and Million.\n\nOtherCarCost (costs for the other car): a four-level factor with levels Thousand, TenThou, HundredThou and Million.\n\nOtherCar (other cars involved in the accident): a two-level factor with levels False and True.\n\nMedCost (cost of the medical treatment): a four-level factor with levels Thousand, TenThou, HundredThou and Million.\n\nCushioning (cushioning): a four-level factor with levels Poor, Fair, Good and Excellent.\n\nAirbag (airbag): a two-level factor with levels False and True.\n\nILiCost (inspection cost): a four-level factor with levels Thousand, TenThou, HundredThou and Million.\n\nDrivHist (driving history): a three-level factor with levels Zero, One and Many.\n\n**Source **\n\nBinder J, Koller D, Russell S, Kanazawa K (1997). \"Adaptive Probabilistic Networks with Hidden Variables\". Machine Learning, 29(2-3):213-244.", "format": "arff", "uploader": "Oleksandr Zadorozhnyi", "uploader_id": 29044, "visibility": "public", "creator": null, "contributor": null, "date": "2022-01-31 11:55:05", "update_comment": null, "last_update": "2022-01-31 11:55:05", "licence": "Public", "status": "active", "error_message": null, "url": "https:\/\/www.openml.org\/data\/download\/22101752\/data.arff", "default_target_attribute": null, "row_id_attribute": null, "ignore_attribute": null, "runs": 0, "suggest": { "input": [ "insurance_dataset", "Insurance is a network for evaluating car insurance risks. The insurance data set contains the following 27 variables: GoodStudent (good student): a two-level factor with levels False and True. Age (age): a three-level factor with levels Adolescent, Adult and Senior. SocioEcon (socio-economic status): a four-level factor with levels Prole, Middle, UpperMiddle and Wealthy. RiskAversion (risk aversion): a four-level factor with levels Psychopath, Adventurous, Normal and Cautious. VehicleYear (vehi " ], "weight": 5 }, "qualities": { "NumberOfInstances": 20000, "NumberOfFeatures": 27, "NumberOfClasses": null, "NumberOfMissingValues": 0, "NumberOfInstancesWithMissingValues": 0, "NumberOfNumericFeatures": 0, "NumberOfSymbolicFeatures": 27, "Dimensionality": 0.00135, "PercentageOfNumericFeatures": 0, "MajorityClassPercentage": null, "PercentageOfSymbolicFeatures": 100, "MajorityClassSize": null, "MinorityClassPercentage": null, "MinorityClassSize": null, "NumberOfBinaryFeatures": 8, "PercentageOfBinaryFeatures": 29.629629629629626, "PercentageOfInstancesWithMissingValues": 0, "AutoCorrelation": null, "PercentageOfMissingValues": 0 }, "tags": [ { "uploader": "38960", "tag": "Machine Learning" }, { "uploader": "38960", "tag": "Mathematics" } ], "features": [ { "name": "GoodStudent", "index": "0", "type": "nominal", "distinct": "2", "missing": "0", "distr": [] }, { "name": "Age", "index": "1", "type": "nominal", "distinct": "3", "missing": "0", "distr": [] }, { "name": "SocioEcon", "index": "2", "type": "nominal", "distinct": "4", "missing": "0", "distr": [] }, { "name": "RiskAversion", "index": "3", "type": "nominal", "distinct": "4", "missing": "0", "distr": [] }, { "name": "VehicleYear", "index": "4", "type": "nominal", "distinct": "2", "missing": "0", "distr": [] }, { "name": "ThisCarDam", "index": "5", "type": "nominal", "distinct": "4", "missing": "0", "distr": [] }, { "name": "RuggedAuto", "index": "6", "type": "nominal", "distinct": "3", "missing": "0", "distr": [] }, { "name": "Accident", "index": "7", "type": "nominal", "distinct": "4", "missing": "0", "distr": [] }, { "name": "MakeModel", "index": "8", "type": "nominal", "distinct": "5", "missing": "0", "distr": [] }, { "name": "DrivQuality", "index": "9", "type": "nominal", "distinct": "3", "missing": "0", "distr": [] }, { "name": "Mileage", "index": "10", "type": "nominal", "distinct": "4", "missing": "0", "distr": [] }, { "name": "Antilock", "index": "11", "type": "nominal", "distinct": "2", "missing": "0", "distr": [] }, { "name": "DrivingSkill", "index": "12", "type": "nominal", "distinct": "3", "missing": "0", "distr": [] }, { "name": "SeniorTrain", "index": "13", "type": "nominal", "distinct": "2", "missing": "0", "distr": [] }, { "name": "ThisCarCost", "index": "14", "type": "nominal", "distinct": "4", "missing": "0", "distr": [] }, { "name": "Theft", "index": "15", "type": "nominal", "distinct": "2", "missing": "0", "distr": [] }, { "name": "CarValue", "index": "16", "type": "nominal", "distinct": "5", "missing": "0", "distr": [] }, { "name": "HomeBase", "index": "17", "type": "nominal", "distinct": "4", "missing": "0", "distr": [] }, { "name": "AntiTheft", "index": "18", "type": "nominal", "distinct": "2", "missing": "0", "distr": [] }, { "name": "PropCost", "index": "19", "type": "nominal", "distinct": "4", "missing": "0", "distr": [] }, { "name": "OtherCarCost", "index": "20", "type": "nominal", "distinct": "3", "missing": "0", "distr": [] }, { "name": "OtherCar", "index": "21", "type": "nominal", "distinct": "2", "missing": "0", "distr": [] }, { "name": "MedCost", "index": "22", "type": "nominal", "distinct": "4", "missing": "0", "distr": [] }, { "name": "Cushioning", "index": "23", "type": "nominal", "distinct": "4", "missing": "0", "distr": [] }, { "name": "Airbag", "index": "24", "type": "nominal", "distinct": "2", "missing": "0", "distr": [] }, { "name": "ILiCost", "index": "25", "type": "nominal", "distinct": "4", "missing": "0", "distr": [] }, { "name": "DrivHist", "index": "26", "type": "nominal", "distinct": "3", "missing": "0", "distr": [] } ], "nr_of_issues": 0, "nr_of_downvotes": 0, "nr_of_likes": 0, "nr_of_downloads": 0, "total_downloads": 0, "reach": 0, "reuse": 0, "impact_of_reuse": 0, "reach_of_reuse": 0, "impact": 0 }