Data
bankmarketing

bankmarketing

active ARFF Public Domain (CC0) Visibility: public Uploaded 11-03-2021 by LUN YEH
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • Machine Learning Physical Sciences
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit

21 features

agenumeric78 unique values
0 missing
jobnominal12 unique values
0 missing
maritalnominal4 unique values
0 missing
educationnominal8 unique values
0 missing
defaultnominal3 unique values
0 missing
housingnominal3 unique values
0 missing
loannominal3 unique values
0 missing
contactnominal2 unique values
0 missing
monthnominal10 unique values
0 missing
day_of_weeknominal5 unique values
0 missing
durationnumeric1544 unique values
0 missing
campaignnumeric42 unique values
0 missing
pdaysnumeric27 unique values
0 missing
previousnumeric8 unique values
0 missing
poutcomenominal3 unique values
0 missing
emp.var.ratenumeric10 unique values
0 missing
cons.price.idxnumeric26 unique values
0 missing
cons.conf.idxnumeric26 unique values
0 missing
euribor3mnumeric316 unique values
0 missing
nr.employednumeric11 unique values
0 missing
ynominal2 unique values
0 missing

19 properties

41188
Number of instances (rows) of the dataset.
21
Number of attributes (columns) of the dataset.
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
10
Number of numeric attributes.
11
Number of nominal attributes.
0
Number of attributes divided by the number of instances.
47.62
Percentage of numeric attributes.
Percentage of instances belonging to the most frequent class.
52.38
Percentage of nominal attributes.
Number of instances belonging to the most frequent class.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.
2
Number of binary attributes.
9.52
Percentage of binary attributes.
0
Percentage of instances having missing values.
Average class difference between consecutive instances.
0
Percentage of missing values.

5 tasks

0 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: housing
0 runs - estimation_procedure: Test on Training Data - target_feature: housing - cost matrix: 2
0 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: housing
0 runs - estimation_procedure: 50 times Clustering - target_feature: Number of binary attributes
0 runs - estimation_procedure: 50 times Clustering - target_feature: y
Define a new task