Data
OpenML
Help
Sign in
×
Sign in
No account? Join OpenML
Forgot password
×
JavaScript is required to properly view the contents of this page!
OpenML
Explore
Data
Task
Flow
Run
Study
Task type
Measure
People
Help
Blog
Contact
Please cite us
datapm2.5
ARFF
CSV
JSON
XML
RDF
datapm2.5
active
ARFF
Public Domain (CC0)
Visibility: public
Uploaded 20-01-2020 by
Tanatip Watthaisong
0 likes
downloaded by 0 people , 0 total downloads
0 issues
0 downvotes
Computer Systems
Social Media
Add tag
Issue
#Downvotes for this reason
By
Loading wiki
Help us complete this description
Edit
The proposed forecasting approach is tested by using the database from UCI machine learning repository. Using a Deep Learning Model Based on 1D Convnets and Bidirectional GRU
10 features
No
numeric
43800 unique values
0 missing
year
numeric
5 unique values
0 missing
month
numeric
12 unique values
0 missing
day
numeric
31 unique values
0 missing
hour
numeric
24 unique values
0 missing
pm2.5
numeric
581 unique values
0 missing
DEWP
numeric
69 unique values
0 missing
TEMP
numeric
64 unique values
0 missing
cbwd
numeric
4 unique values
0 missing
Iws
numeric
2788 unique values
0 missing
Show all 10 features
19 properties
NumberOfInstances
43800
Number of instances (rows) of the dataset.
NumberOfFeatures
10
Number of attributes (columns) of the dataset.
NumberOfClasses
Number of distinct values of the target attribute (if it is nominal).
NumberOfMissingValues
0
Number of missing values in the dataset.
NumberOfInstancesWithMissingValues
0
Number of instances with at least one value missing.
NumberOfNumericFeatures
10
Number of numeric attributes.
NumberOfSymbolicFeatures
0
Number of nominal attributes.
Dimensionality
0
Number of attributes divided by the number of instances.
PercentageOfNumericFeatures
100
Percentage of numeric attributes.
MajorityClassPercentage
Percentage of instances belonging to the most frequent class.
PercentageOfSymbolicFeatures
0
Percentage of nominal attributes.
MajorityClassSize
Number of instances belonging to the most frequent class.
MinorityClassPercentage
Percentage of instances belonging to the least frequent class.
MinorityClassSize
Number of instances belonging to the least frequent class.
NumberOfBinaryFeatures
0
Number of binary attributes.
PercentageOfBinaryFeatures
0
Percentage of binary attributes.
PercentageOfInstancesWithMissingValues
0
Percentage of instances having missing values.
AutoCorrelation
Average class difference between consecutive instances.
PercentageOfMissingValues
0
Percentage of missing values.
Show all 19 properties
9 tasks
Supervised Regression on datapm2.5
0 runs
- estimation_procedure: Test on Training Data - evaluation_measure: predictive_accuracy - target_feature: pm2.5
Supervised Regression on datapm2.5
0 runs
- estimation_procedure: Test on Training Data - evaluation_measure: Mean absolute error - target_feature: pm2.5
Clustering on datapm2.5
0 runs
- estimation_procedure: 50 times Clustering
Clustering on datapm2.5
0 runs
- estimation_procedure: 50 times Clustering
Clustering on datapm2.5
0 runs
- estimation_procedure: 50 times Clustering
Clustering on datapm2.5
0 runs
- estimation_procedure: 50 times Clustering
Clustering on datapm2.5
0 runs
- estimation_procedure: 50 times Clustering
Clustering on datapm2.5
0 runs
- estimation_procedure: 50 times Clustering
Clustering on datapm2.5
0 runs
- estimation_procedure: 50 times Clustering
Define a new task