Data
bot-iot-all-features

bot-iot-all-features

active ARFF Public Domain (CC0) Visibility: public Uploaded 07-08-2019 by Yuliya Khan
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
The BoT-IoT dataset was created by designing a realistic network environment in the Cyber Range Lab of The center of UNSW Canberra Cyber. The environment incorporates a combination of normal and botnet traffic. Free use of the Bot-IoT dataset for academic research purposes is hereby granted in perpetuity. Use for commercial purposes should be agreed by the authors. The authors have asserted their rights under the Copyright. To whom intent the use of the Bot-IoT dataset, please cite the following paper that has the dataset’s details.

45 features

attack (target)numeric2 unique values
0 missing
pkSeqID (row identifier)numeric3668522 unique values
0 missing
stimenumeric392259 unique values
0 missing
flgsnominal9 unique values
0 missing
flgs_numbernumeric9 unique values
0 missing
protonominal5 unique values
0 missing
proto_numbernumeric5 unique values
0 missing
saddrnominal21 unique values
0 missing
sportnominal65541 unique values
0 missing
daddrnominal84 unique values
0 missing
dportnominal7698 unique values
0 missing
pktsnumeric123 unique values
0 missing
bytesnumeric1633 unique values
0 missing
statenominal11 unique values
0 missing
state_numbernumeric11 unique values
0 missing
ltimenumeric383624 unique values
0 missing
seqnumeric262212 unique values
0 missing
durnumeric612509 unique values
0 missing
meannumeric507089 unique values
0 missing
stddevnumeric421379 unique values
0 missing
sumnumeric934972 unique values
0 missing
minnumeric182498 unique values
0 missing
maxnumeric594525 unique values
0 missing
spktsnumeric91 unique values
0 missing
dpktsnumeric62 unique values
0 missing
sbytesnumeric1052 unique values
0 missing
dbytesnumeric472 unique values
0 missing
ratenumeric139677 unique values
0 missing
sratenumeric119709 unique values
0 missing
dratenumeric8774 unique values
0 missing
TnBPSrcIPnumeric8639 unique values
0 missing
TnBPDstIPnumeric7631 unique values
0 missing
TnP_PSrcIPnumeric1522 unique values
0 missing
TnP_PDstIPnumeric1587 unique values
0 missing
TnP_PerProtonumeric1560 unique values
0 missing
TnP_Per_Dportnumeric1582 unique values
0 missing
AR_P_Proto_P_SrcIPnumeric46289 unique values
0 missing
AR_P_Proto_P_DstIPnumeric39186 unique values
0 missing
N_IN_Conn_P_DstIPnumeric100 unique values
0 missing
N_IN_Conn_P_SrcIPnumeric100 unique values
0 missing
AR_P_Proto_P_Sportnumeric136207 unique values
0 missing
AR_P_Proto_P_Dportnumeric42237 unique values
0 missing
Pkts_P_State_P_Protocol_P_DestIPnumeric1595 unique values
0 missing
Pkts_P_State_P_Protocol_P_SrcIPnumeric1526 unique values
0 missing
categorynominal5 unique values
0 missing
subcategorynominal8 unique values
0 missing

19 properties

3668522
Number of instances (rows) of the dataset.
45
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
36
Number of numeric attributes.
9
Number of nominal attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
1
Average class difference between consecutive instances.
80
Percentage of numeric attributes.
0
Number of attributes divided by the number of instances.
20
Percentage of nominal attributes.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.
0
Number of binary attributes.

9 tasks

0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering - target_feature: attack
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task