Data
SAT11-HAND-runtime-regression

SAT11-HAND-runtime-regression

active ARFF Publicly available Visibility: public Uploaded 23-07-2019 by Martin Hoang
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • Algorithm Selection Demographics Geography R
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
source: http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/ authors: L. Xu, F. Hutter, H. Hoos, K. Leyton-Brown translator in coseal format: M. Lindauer with the help of Alexandre Frechette the data do not distinguish between timeout, memout or crashes! the status file will only have ok or timeout! If features are "?", the instance was solved during feature computation. Although there is no necessary alignment and dependencies between the feature processing steps, the steps were executed in a fixed alignment. Therefore, all feature steps depend on the previous executed ones.

117 features

runtime (target)numeric1945 unique values
0 missing
nvarsOrignumeric221 unique values
0 missing
nclausesOrignumeric255 unique values
0 missing
nvarsnumeric221 unique values
0 missing
nclausesnumeric282 unique values
0 missing
reducedVarsnumeric103 unique values
0 missing
reducedClausesnumeric142 unique values
0 missing
vars_clauses_rationumeric213 unique values
0 missing
POSNEG_RATIO_CLAUSE_meannumeric162 unique values
0 missing
POSNEG_RATIO_CLAUSE_coeff_variationnumeric178 unique values
0 missing
POSNEG_RATIO_CLAUSE_minnumeric34 unique values
0 missing
POSNEG_RATIO_CLAUSE_maxnumeric1 unique values
0 missing
POSNEG_RATIO_CLAUSE_entropynumeric205 unique values
0 missing
VCG_CLAUSE_meannumeric168 unique values
0 missing
VCG_CLAUSE_coeff_variationnumeric258 unique values
0 missing
VCG_CLAUSE_minnumeric129 unique values
0 missing
VCG_CLAUSE_maxnumeric189 unique values
0 missing
VCG_CLAUSE_entropynumeric256 unique values
0 missing
UNARYnumeric1 unique values
0 missing
BINARYpnumeric201 unique values
0 missing
TRINARYpnumeric229 unique values
0 missing
VCG_VAR_meannumeric168 unique values
0 missing
VCG_VAR_coeff_variationnumeric207 unique values
0 missing
VCG_VAR_minnumeric151 unique values
0 missing
VCG_VAR_maxnumeric202 unique values
0 missing
VCG_VAR_entropynumeric222 unique values
0 missing
POSNEG_RATIO_VAR_meannumeric252 unique values
0 missing
POSNEG_RATIO_VAR_stdevnumeric193 unique values
0 missing
POSNEG_RATIO_VAR_minnumeric154 unique values
0 missing
POSNEG_RATIO_VAR_maxnumeric208 unique values
0 missing
POSNEG_RATIO_VAR_entropynumeric215 unique values
0 missing
HORNY_VAR_meannumeric114 unique values
0 missing
HORNY_VAR_coeff_variationnumeric229 unique values
0 missing
HORNY_VAR_minnumeric82 unique values
0 missing
HORNY_VAR_maxnumeric152 unique values
0 missing
HORNY_VAR_entropynumeric239 unique values
0 missing
horn_clauses_fractionnumeric266 unique values
0 missing
VG_meannumeric169 unique values
0 missing
VG_coeff_variationnumeric201 unique values
0 missing
VG_minnumeric156 unique values
0 missing
VG_maxnumeric189 unique values
0 missing
CG_meannumeric106 unique values
2715 missing
CG_coeff_variationnumeric105 unique values
2715 missing
CG_minnumeric89 unique values
2715 missing
CG_maxnumeric112 unique values
2715 missing
CG_entropynumeric104 unique values
2715 missing
cluster_coeff_meannumeric103 unique values
2715 missing
cluster_coeff_coeff_variationnumeric105 unique values
2715 missing
cluster_coeff_minnumeric84 unique values
2715 missing
cluster_coeff_maxnumeric70 unique values
2715 missing
cluster_coeff_entropynumeric103 unique values
2715 missing
DIAMETER_meannumeric152 unique values
0 missing
DIAMETER_coeff_variationnumeric144 unique values
0 missing
DIAMETER_minnumeric12 unique values
0 missing
DIAMETER_maxnumeric17 unique values
0 missing
DIAMETER_entropynumeric146 unique values
0 missing
cl_num_meannumeric274 unique values
0 missing
cl_num_coeff_variationnumeric255 unique values
0 missing
cl_num_minnumeric246 unique values
0 missing
cl_num_maxnumeric268 unique values
0 missing
cl_num_q90numeric267 unique values
0 missing
cl_num_q10numeric253 unique values
0 missing
cl_num_q75numeric261 unique values
0 missing
cl_num_q25numeric262 unique values
0 missing
cl_num_q50numeric266 unique values
0 missing
cl_size_meannumeric277 unique values
0 missing
cl_size_coeff_variationnumeric254 unique values
0 missing
cl_size_minnumeric277 unique values
0 missing
cl_size_maxnumeric277 unique values
0 missing
cl_size_q90numeric277 unique values
0 missing
cl_size_q10numeric277 unique values
0 missing
cl_size_q75numeric277 unique values
0 missing
cl_size_q25numeric277 unique values
0 missing
cl_size_q50numeric276 unique values
0 missing
SP_bias_meannumeric266 unique values
0 missing
SP_bias_coeff_variationnumeric214 unique values
0 missing
SP_bias_minnumeric208 unique values
0 missing
SP_bias_maxnumeric239 unique values
0 missing
SP_bias_q90numeric261 unique values
0 missing
SP_bias_q10numeric248 unique values
0 missing
SP_bias_q75numeric262 unique values
0 missing
SP_bias_q25numeric250 unique values
0 missing
SP_bias_q50numeric260 unique values
0 missing
SP_unconstraint_meannumeric156 unique values
0 missing
SP_unconstraint_coeff_variationnumeric248 unique values
0 missing
SP_unconstraint_minnumeric101 unique values
0 missing
SP_unconstraint_maxnumeric156 unique values
0 missing
SP_unconstraint_q90numeric151 unique values
0 missing
SP_unconstraint_q10numeric130 unique values
0 missing
SP_unconstraint_q75numeric145 unique values
0 missing
SP_unconstraint_q25numeric139 unique values
0 missing
SP_unconstraint_q50numeric148 unique values
0 missing
saps_BestSolution_Meannumeric291 unique values
0 missing
saps_BestSolution_CoeffVariancenumeric283 unique values
0 missing
saps_FirstLocalMinStep_Meannumeric296 unique values
0 missing
saps_FirstLocalMinStep_CoeffVariancenumeric272 unique values
0 missing
saps_FirstLocalMinStep_Mediannumeric225 unique values
0 missing
saps_FirstLocalMinStep_Q10numeric218 unique values
0 missing
saps_FirstLocalMinStep_Q90numeric232 unique values
0 missing
saps_BestAvgImprovement_Meannumeric296 unique values
0 missing
saps_BestAvgImprovement_CoeffVariancenumeric276 unique values
0 missing
saps_FirstLocalMinRatio_Meannumeric225 unique values
0 missing
saps_FirstLocalMinRatio_CoeffVariancenumeric235 unique values
0 missing
gsat_BestSolution_Meannumeric283 unique values
0 missing
gsat_BestSolution_CoeffVariancenumeric278 unique values
0 missing
gsat_FirstLocalMinStep_Meannumeric296 unique values
0 missing
gsat_FirstLocalMinStep_CoeffVariancenumeric268 unique values
0 missing
gsat_FirstLocalMinStep_Mediannumeric220 unique values
0 missing
gsat_FirstLocalMinStep_Q10numeric219 unique values
0 missing
gsat_FirstLocalMinStep_Q90numeric224 unique values
0 missing
gsat_BestAvgImprovement_Meannumeric296 unique values
0 missing
gsat_BestAvgImprovement_CoeffVariancenumeric287 unique values
0 missing
gsat_FirstLocalMinRatio_Meannumeric210 unique values
0 missing
gsat_FirstLocalMinRatio_CoeffVariancenumeric207 unique values
0 missing
lobjois_mean_depth_over_varsnumeric287 unique values
0 missing
lobjois_log_num_nodes_over_varsnumeric279 unique values
0 missing
algorithmnominal15 unique values
0 missing
row_id (row identifier)string4440 unique values
0 missing

62 properties

4440
Number of instances (rows) of the dataset.
117
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
27150
Number of missing values in the dataset.
2715
Number of instances with at least one value missing.
116
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.03
Number of attributes divided by the number of instances.
15
Average number of distinct values among the attributes of the nominal type.
6.14
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
3.15
Mean skewness among attributes of the numeric type.
0.59
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
3729.09
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
2.04
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.92
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.44
Second quartile (Median) of standard deviation of attributes of the numeric type.
282.07
Maximum kurtosis among attributes of the numeric type.
0
Minimum of means among attributes of the numeric type.
61.15
Percentage of instances having missing values.
Third quartile of entropy among attributes.
99613.75
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
5.23
Percentage of missing values.
23.72
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
15
The minimal number of distinct values among attributes of the nominal type.
99.15
Percentage of numeric attributes.
42.18
Third quartile of means among attributes of the numeric type.
15
The maximum number of distinct values among attributes of the nominal type.
-1.47
Minimum skewness among attributes of the numeric type.
0.85
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
16.72
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
4.6
Third quartile of skewness among attributes of the numeric type.
197381.95
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.69
First quartile of kurtosis among attributes of the numeric type.
40.48
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.11
First quartile of means among attributes of the numeric type.
0
Standard deviation of the number of distinct values among attributes of the nominal type.
27.6
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
1943.31
Mean of means among attributes of the numeric type.
0.5
First quartile of skewness among attributes of the numeric type.
-761.72
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.14
First quartile of standard deviation of attributes of the numeric type.

9 tasks

3 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: root_mean_squared_error - target_feature: runtime
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task