Data
crimecommunitynums2

crimecommunitynums2

active ARFF Public Domain (CC0) Visibility: public Uploaded 26-06-2019 by S
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
testtest

127 features

state (target)numeric46 unique values
0 missing
countynumeric109 unique values
0 missing
communitynumeric800 unique values
0 missing
foldnumeric10 unique values
0 missing
populationnumeric66 unique values
0 missing
householdsizenumeric93 unique values
0 missing
racepctblacknumeric100 unique values
0 missing
racePctWhitenumeric99 unique values
0 missing
racePctAsiannumeric91 unique values
0 missing
racePctHispnumeric91 unique values
0 missing
agePct12t21numeric93 unique values
0 missing
agePct12t29numeric89 unique values
0 missing
agePct16t24numeric94 unique values
0 missing
agePct65upnumeric98 unique values
0 missing
numbUrbannumeric67 unique values
0 missing
pctUrbannumeric64 unique values
0 missing
medIncomenumeric99 unique values
0 missing
pctWWagenumeric96 unique values
0 missing
pctWFarmSelfnumeric99 unique values
0 missing
pctWInvIncnumeric96 unique values
0 missing
pctWSocSecnumeric96 unique values
0 missing
pctWPubAsstnumeric101 unique values
0 missing
pctWRetirenumeric93 unique values
0 missing
medFamIncnumeric98 unique values
0 missing
perCapIncnumeric98 unique values
0 missing
whitePerCapnumeric101 unique values
0 missing
blackPerCapnumeric91 unique values
0 missing
indianPerCapnumeric86 unique values
0 missing
AsianPerCapnumeric98 unique values
0 missing
OtherPerCapnumeric97 unique values
0 missing
HispPerCapnumeric94 unique values
0 missing
NumUnderPovnumeric66 unique values
0 missing
PctPopUnderPovnumeric100 unique values
0 missing
PctLess9thGradenumeric97 unique values
0 missing
PctNotHSGradnumeric99 unique values
0 missing
PctBSorMorenumeric96 unique values
0 missing
PctUnemployednumeric98 unique values
0 missing
PctEmploynumeric96 unique values
0 missing
PctEmplManunumeric100 unique values
0 missing
PctEmplProfServnumeric96 unique values
0 missing
PctOccupManunumeric98 unique values
0 missing
PctOccupMgmtProfnumeric99 unique values
0 missing
MalePctDivorcenumeric98 unique values
0 missing
MalePctNevMarrnumeric96 unique values
0 missing
FemalePctDivnumeric91 unique values
0 missing
TotalPctDivnumeric94 unique values
0 missing
PersPerFamnumeric92 unique values
0 missing
PctFam2Parnumeric101 unique values
0 missing
PctKids2Parnumeric97 unique values
0 missing
PctYoungKids2Parnumeric99 unique values
0 missing
PctTeen2Parnumeric96 unique values
0 missing
PctWorkMomYoungKidsnumeric95 unique values
0 missing
PctWorkMomnumeric98 unique values
0 missing
NumIllegnumeric55 unique values
0 missing
PctIllegnumeric97 unique values
0 missing
NumImmignumeric47 unique values
0 missing
PctImmigRecentnumeric99 unique values
0 missing
PctImmigRec5numeric100 unique values
0 missing
PctImmigRec8numeric97 unique values
0 missing
PctImmigRec10numeric97 unique values
0 missing
PctRecentImmignumeric95 unique values
0 missing
PctRecImmig5numeric97 unique values
0 missing
PctRecImmig8numeric98 unique values
0 missing
PctRecImmig10numeric100 unique values
0 missing
PctSpeakEnglOnlynumeric98 unique values
0 missing
PctNotSpeakEnglWellnumeric94 unique values
0 missing
PctLargHouseFamnumeric99 unique values
0 missing
PctLargHouseOccupnumeric96 unique values
0 missing
PersPerOccupHousnumeric96 unique values
0 missing
PersPerOwnOccHousnumeric94 unique values
0 missing
PersPerRentOccHousnumeric98 unique values
0 missing
PctPersOwnOccupnumeric100 unique values
0 missing
PctPersDenseHousnumeric94 unique values
0 missing
PctHousLess3BRnumeric100 unique values
0 missing
MedNumBRnumeric3 unique values
0 missing
HousVacantnumeric70 unique values
0 missing
PctHousOccupnumeric92 unique values
0 missing
PctHousOwnOccnumeric99 unique values
0 missing
PctVacantBoardednumeric97 unique values
0 missing
PctVacMore6Mosnumeric98 unique values
0 missing
MedYrHousBuiltnumeric49 unique values
0 missing
PctHousNoPhonenumeric99 unique values
0 missing
PctWOFullPlumbnumeric91 unique values
0 missing
OwnOccLowQuartnumeric99 unique values
0 missing
OwnOccMedValnumeric100 unique values
0 missing
OwnOccHiQuartnumeric98 unique values
0 missing
RentLowQnumeric101 unique values
0 missing
RentMediannumeric99 unique values
0 missing
RentHighQnumeric99 unique values
0 missing
MedRentnumeric100 unique values
0 missing
MedRentPctHousIncnumeric95 unique values
0 missing
MedOwnCostPctIncnumeric97 unique values
0 missing
MedOwnCostPctIncNoMtgnumeric70 unique values
0 missing
NumInSheltersnumeric54 unique values
0 missing
NumStreetnumeric53 unique values
0 missing
PctForeignBornnumeric96 unique values
0 missing
PctBornSameStatenumeric99 unique values
0 missing
PctSameHouse85numeric99 unique values
0 missing
PctSameCity85numeric100 unique values
0 missing
PctSameState85numeric97 unique values
0 missing
LemasSwornFTnumeric38 unique values
0 missing
LemasSwFTPerPopnumeric52 unique values
0 missing
LemasSwFTFieldOpsnumeric34 unique values
0 missing
LemasSwFTFieldPerPopnumeric55 unique values
0 missing
LemasTotalReqnumeric44 unique values
0 missing
LemasTotReqPerPopnumeric59 unique values
0 missing
PolicReqPerOfficnumeric75 unique values
0 missing
PolicPerPopnumeric52 unique values
0 missing
RacialMatchCommPolnumeric76 unique values
0 missing
PctPolicWhitenumeric74 unique values
0 missing
PctPolicBlacknumeric73 unique values
0 missing
PctPolicHispnumeric54 unique values
0 missing
PctPolicAsiannumeric50 unique values
0 missing
PctPolicMinornumeric72 unique values
0 missing
OfficAssgnDrugUnitsnumeric30 unique values
0 missing
NumKindsDrugsSeiznumeric15 unique values
0 missing
PolicAveOTWorkednumeric77 unique values
0 missing
LandAreanumeric61 unique values
0 missing
PopDensnumeric96 unique values
0 missing
PctUsePubTransnumeric98 unique values
0 missing
PolicCarsnumeric63 unique values
0 missing
PolicOperBudgnumeric38 unique values
0 missing
LemasPctPolicOnPatrnumeric72 unique values
0 missing
LemasGangUnitDeploynumeric3 unique values
0 missing
LemasPctOfficDrugUnnumeric80 unique values
0 missing
PolicBudgPerPopnumeric51 unique values
0 missing
ViolentCrimesPerPopnumeric98 unique values
0 missing

62 properties

1994
Number of instances (rows) of the dataset.
127
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
127
Number of numeric attributes.
0
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.06
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
1.74
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
1.95
Mean skewness among attributes of the numeric type.
0.32
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
220.68
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
1.29
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.31
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.19
Second quartile (Median) of standard deviation of attributes of the numeric type.
174.62
Maximum kurtosis among attributes of the numeric type.
0.01
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
18924.71
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
5.79
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
100
Percentage of numeric attributes.
0.48
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.94
Minimum skewness among attributes of the numeric type.
0
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
11.42
Maximum skewness among attributes of the numeric type.
0.06
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
2.37
Third quartile of skewness among attributes of the numeric type.
27897.73
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.22
First quartile of kurtosis among attributes of the numeric type.
0.22
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.14
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
12.01
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
149.77
Mean of means among attributes of the numeric type.
0.41
First quartile of skewness among attributes of the numeric type.
-17.94
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.17
First quartile of standard deviation of attributes of the numeric type.

9 tasks

0 runs - estimation_procedure: 33% Holdout set - target_feature: state
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task