{ "data_id": "41928", "name": "CPMP-2015-runtime-regression", "exact_name": "CPMP-2015-runtime-regression", "version": 1, "version_label": null, "description": "source: An Algorithm Selection Benchmark for the Container Pre-Marshalling Problem (CPMP)\nauthors: K. Tierney and Y. Malitsky (features) \/ K. Tierney and D. Pacino and S. Voss (algorithms)\ntranslator in coseal format: K. Tierney\n\nThis is an extension of the 2013 premarshalling dataset that includes more features and a set of test instances. \n\nThere are three sets of features:\n\nfeature_values.arff contains the full set of features from iteration 2 of our latent feature analysis (LFA) process (see paper)\nfeature_values_itr1.arff contains only the features after iteration 1 of LFA\nfeature_values_orig.arff containers the features used in PREMARHSALLING-ASTAR-2013\n\nWe also provide test data with an identical naming scheme (see _test). \n\nThe features for the pre-marshalling problem are all extremely easy and fast to\ncompute, thus the feature_costs.arff file has been omitted, as it would be time\n0 for every feature (regardless of using original, iteration 1 or iteration 2\nfeatures).\n\nThe feature computation code is available at https:\/\/bitbucket.org\/eusorpb\/cpmp-as\n\nNote: previously the scenario was called PREMARSHALLING-ASTAR-2015. To save same space, we renamed the scenario.", "format": "ARFF", "uploader": "Martin Hoang", "uploader_id": 8316, "visibility": "public", "creator": null, "contributor": null, "date": "2019-06-19 14:48:51", "update_comment": null, "last_update": "2019-06-19 14:48:51", "licence": "Public", "status": "active", "error_message": null, "url": "https:\/\/www.openml.org\/data\/download\/21378721\/file13b8698041a.arff", "default_target_attribute": "runtime", "row_id_attribute": "row_id", "ignore_attribute": null, "runs": 0, "suggest": { "input": [ "CPMP-2015-runtime-regression", "source: An Algorithm Selection Benchmark for the Container Pre-Marshalling Problem (CPMP) authors: K. Tierney and Y. Malitsky (features) \/ K. Tierney and D. Pacino and S. Voss (algorithms) translator in coseal format: K. Tierney This is an extension of the 2013 premarshalling dataset that includes more features and a set of test instances. There are three sets of features: feature_values.arff contains the full set of features from iteration 2 of our latent feature analysis (LFA) process (see pap " ], "weight": 5 }, "qualities": { "NumberOfInstances": 2108, "NumberOfFeatures": 24, "NumberOfClasses": 0, "NumberOfMissingValues": 0, "NumberOfInstancesWithMissingValues": 0, "NumberOfNumericFeatures": 23, "NumberOfSymbolicFeatures": 1, "ClassEntropy": null, "MeanNoiseToSignalRatio": null, "Quartile2AttributeEntropy": null, "Dimensionality": 0.011385199240986717, "MeanNominalAttDistinctValues": 4, "Quartile2KurtosisOfNumericAtts": -0.38166141113722674, "EquivalentNumberOfAtts": null, "MeanSkewnessOfNumericAtts": 0.4766923712122562, "Quartile2MeansOfNumericAtts": 0.8505986242884257, "MajorityClassPercentage": null, "MeanStdDevOfNumericAtts": 70.53616577857723, "Quartile2MutualInformation": null, "MajorityClassSize": null, "MinAttributeEntropy": null, "Quartile2SkewnessOfNumericAtts": 0.5957399922638349, "MaxAttributeEntropy": null, "MinKurtosisOfNumericAtts": -2.0011927119937525, "PercentageOfBinaryFeatures": 0, "Quartile2StdDevOfNumericAtts": 0.5000745178798689, "MaxKurtosisOfNumericAtts": 6.071136443146282, "MinMeansOfNumericAtts": 0.0659788104364318, "PercentageOfInstancesWithMissingValues": 0, "Quartile3AttributeEntropy": null, "MaxMeansOfNumericAtts": 1164.9277775142311, "MinMutualInformation": null, "PercentageOfMissingValues": 0, "Quartile3KurtosisOfNumericAtts": 0.22012913404145307, "MaxMutualInformation": null, "MinNominalAttDistinctValues": 4, "PercentageOfNumericFeatures": 95.83333333333334, "Quartile3MeansOfNumericAtts": 5.874762808349146, "MaxNominalAttDistinctValues": 4, "MinSkewnessOfNumericAtts": -1.6776090137297506, "PercentageOfSymbolicFeatures": 4.166666666666666, "Quartile3MutualInformation": null, "MaxSkewnessOfNumericAtts": 1.8121805854826596, "MinStdDevOfNumericAtts": 0.05290050147290064, "Quartile1AttributeEntropy": null, "Quartile3SkewnessOfNumericAtts": 0.7876577620227276, "MaxStdDevOfNumericAtts": 1582.5622743950255, "MinorityClassPercentage": null, "Quartile1KurtosisOfNumericAtts": -1.0000758022924714, "Quartile3StdDevOfNumericAtts": 2.6924055555355046, "MeanAttributeEntropy": null, "MinorityClassSize": null, "Quartile1MeansOfNumericAtts": 0.46142524857685013, "StdvNominalAttDistinctValues": 0, "MeanKurtosisOfNumericAtts": -0.028770464338326602, "NumberOfBinaryFeatures": 0, "Quartile1MutualInformation": null, "MeanMeansOfNumericAtts": 54.541933229583336, "Quartile1SkewnessOfNumericAtts": 0.1525787309553951, "AutoCorrelation": -997.2410037968693, "MeanMutualInformation": null, "Quartile1StdDevOfNumericAtts": 0.13903323590593156 }, "tags": [ { "uploader": "8316", "tag": "Algorithm Selection" }, { "uploader": "38960", "tag": "Machine Learning" }, { "uploader": "38960", "tag": "Medicine" }, { "uploader": "8316", "tag": "R" } ], "features": [ { "name": "runtime", "index": "23", "type": "numeric", "distinct": "1161", "missing": "0", "target": "1", "min": "0", "max": "3600", "mean": "1165", "stdev": "1583" }, { "name": "stacks", "index": "0", "type": "numeric", "distinct": "10", "missing": "0", "min": "4", "max": "20", "mean": "12", "stdev": "6" }, { "name": "tiers", "index": "1", "type": "numeric", "distinct": "4", "missing": "0", "min": "5", "max": "8", "mean": "6", "stdev": "1" }, { "name": "stack.tier.ratio", "index": "2", "type": "numeric", "distinct": "17", "missing": "0", "min": "0", "max": "2", "mean": "1", "stdev": "0" }, { "name": "container.density", "index": "3", "type": "numeric", "distinct": "7", "missing": "0", "min": "1", "max": "1", "mean": "1", "stdev": "0" }, { "name": "empty.stack.pct", "index": "4", "type": "numeric", "distinct": "15", "missing": "0", "min": "0", "max": "0", "mean": "0", "stdev": "0" }, { "name": "overstowing.stack.pct", "index": "5", "type": "numeric", "distinct": "22", "missing": "0", "min": "1", "max": "1", "mean": "1", "stdev": "0" }, { "name": "overstowing.2cont.stack.pct", "index": "6", "type": "numeric", "distinct": "34", "missing": "0", "min": "1", "max": "1", "mean": "1", "stdev": "0" }, { "name": "group.same.min", "index": "7", "type": "numeric", "distinct": "2", "missing": "0", "min": "0", "max": "1", "mean": "0", "stdev": "1" }, { "name": "group.same.max", "index": "8", "type": "numeric", "distinct": "12", "missing": "0", "min": "1", "max": "14", "mean": "4", "stdev": "3" }, { "name": "group.same.mean", "index": "9", "type": "numeric", "distinct": "13", "missing": "0", "min": "1", "max": "5", "mean": "2", "stdev": "2" }, { "name": "group.same.stdev", "index": "10", "type": "numeric", "distinct": "139", "missing": "0", "min": "0", "max": "3", "mean": "1", "stdev": "1" }, { "name": "top.good.min", "index": "11", "type": "numeric", "distinct": "8", "missing": "0", "min": "1", "max": "8", "mean": "2", "stdev": "1" }, { "name": "top.good.max", "index": "12", "type": "numeric", "distinct": "31", "missing": "0", "min": "5", "max": "36", "mean": "15", "stdev": "6" }, { "name": "top.good.mean", "index": "13", "type": "numeric", "distinct": "281", "missing": "0", "min": "3", "max": "17", "mean": "8", "stdev": "3" }, { "name": "top.good.stdev", "index": "14", "type": "numeric", "distinct": "484", "missing": "0", "min": "1", "max": "12", "mean": "4", "stdev": "2" }, { "name": "overstowage.pct", "index": "15", "type": "numeric", "distinct": "69", "missing": "0", "min": "0", "max": "1", "mean": "0", "stdev": "0" }, { "name": "bflb", "index": "16", "type": "numeric", "distinct": "49", "missing": "0", "min": "8", "max": "72", "mean": "30", "stdev": "14" }, { "name": "left.density", "index": "17", "type": "numeric", "distinct": "215", "missing": "0", "min": "0", "max": "1", "mean": "0", "stdev": "0" }, { "name": "tier.weighted.groups", "index": "18", "type": "numeric", "distinct": "522", "missing": "0", "min": "0", "max": "1", "mean": "0", "stdev": "0" }, { "name": "avg.l1.top.left.lg.group", "index": "19", "type": "numeric", "distinct": "218", "missing": "0", "min": "0", "max": "1", "mean": "1", "stdev": "0" }, { "name": "cont.empty.grt.estack", "index": "20", "type": "numeric", "distinct": "62", "missing": "0", "min": "0", "max": "0", "mean": "0", "stdev": "0" }, { "name": "pct.bottom.pct.on.top", "index": "21", "type": "numeric", "distinct": "22", "missing": "0", "min": "0", "max": "1", "mean": "0", "stdev": "0" }, { "name": "algorithm", "index": "22", "type": "nominal", "distinct": "4", "missing": "0", "distr": [] }, { "name": "row_id", "index": "24", "type": "string", "distinct": "2108", "missing": "0", "identifier": "1" } ], "nr_of_issues": 0, "nr_of_downvotes": 0, "nr_of_likes": 0, "nr_of_downloads": 0, "total_downloads": 0, "reach": 0, "reuse": 0, "impact_of_reuse": 0, "reach_of_reuse": 0, "impact": 0 }