Data
FOREX_eurusd-day-Close

FOREX_eurusd-day-Close

active ARFF Publicly available Visibility: public Uploaded 04-06-2019 by Jan van Rijn
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • finance forex forex_close forex_day Machine Learning Transportation
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Source: Dukascopy Historical Data Feed https://www.dukascopy.com/swiss/english/marketwatch/historical/ Edited by: Fabian Schut # Data Description This is the historical price data of the FOREX EUR/USD from Dukascopy. One instance (row) is one candlestick of one day. The whole dataset has the data range from 1-1-2018 to 13-12-2018 and does not include the weekends, since the FOREX is not traded in the weekend. The timezone of the feature Timestamp is Europe/Amsterdam. The class attribute is the direction of the mean of the Close_Bid and the Close_Ask of the following day, relative to the Close_Bid and Close_Ask mean of the current minute. This means the class attribute is True when the mean Close price is going up the following day, and the class attribute is False when the mean Close price is going down (or stays the same) the following day. # Attributes `Timestamp`: The time of the current data point (Europe/Amsterdam) `Bid_Open`: The bid price at the start of this time interval `Bid_High`: The highest bid price during this time interval `Bid_Low`: The lowest bid price during this time interval `Bid_Close`: The bid price at the end of this time interval `Bid_Volume`: The number of times the Bid Price changed within this time interval `Ask_Open`: The ask price at the start of this time interval `Ask_High`: The highest ask price during this time interval `Ask_Low`: The lowest ask price during this time interval `Ask_Close`: The ask price at the end of this time interval `Ask_Volume`: The number of times the Ask Price changed within this time interval `Class`: Whether the average price will go up during the next interval

12 features

Class (target)nominal2 unique values
0 missing
Timestampdate1837 unique values
0 missing
Bid_Opennumeric1781 unique values
0 missing
Bid_Highnumeric1776 unique values
0 missing
Bid_Lownumeric1754 unique values
0 missing
Bid_Closenumeric1780 unique values
0 missing
Bid_Volumenumeric1826 unique values
0 missing
Ask_Opennumeric1794 unique values
0 missing
Ask_Highnumeric1786 unique values
0 missing
Ask_Lownumeric1766 unique values
0 missing
Ask_Closenumeric1777 unique values
0 missing
Ask_Volumenumeric1825 unique values
0 missing

62 properties

1837
Number of instances (rows) of the dataset.
12
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
11
Number of numeric attributes.
1
Number of nominal attributes.
1
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.01
Number of attributes divided by the number of instances.
2
Average number of distinct values among the attributes of the nominal type.
-1.37
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.89
Mean skewness among attributes of the numeric type.
1.21
Second quartile (Median) of means among attributes of the numeric type.
50.41
Percentage of instances belonging to the most frequent class.
5803762496.32
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
926
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.17
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.38
Minimum kurtosis among attributes of the numeric type.
8.33
Percentage of binary attributes.
0.1
Second quartile (Median) of standard deviation of attributes of the numeric type.
20.13
Maximum kurtosis among attributes of the numeric type.
1.21
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
1435488081001.6
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
-1.2
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
91.67
Percentage of numeric attributes.
238128.05
Third quartile of means among attributes of the numeric type.
2
The maximum number of distinct values among attributes of the nominal type.
0.01
Minimum skewness among attributes of the numeric type.
8.33
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
4.26
Maximum skewness among attributes of the numeric type.
0.1
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.17
Third quartile of skewness among attributes of the numeric type.
63841042783.25
Maximum standard deviation of attributes of the numeric type.
49.59
Percentage of instances belonging to the least frequent class.
-1.37
First quartile of kurtosis among attributes of the numeric type.
169685.05
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
911
Number of instances belonging to the least frequent class.
1.21
First quartile of means among attributes of the numeric type.
0
Standard deviation of the number of distinct values among attributes of the nominal type.
2.5
Mean kurtosis among attributes of the numeric type.
1
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
130498960174.7
Mean of means among attributes of the numeric type.
0.17
First quartile of skewness among attributes of the numeric type.
0.48
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.1
First quartile of standard deviation of attributes of the numeric type.

10 tasks

0 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 20% Holdout (Ordered) - target_feature: Class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task