Data
yeast

yeast

active ARFF Publicly available Visibility: public Uploaded 14-03-2019 by Quay Au
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • 2019_multioutput_paper Biology Computational Biology
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Multi-label dataset. The yeast dataset (Elisseeff and Weston, 2002) consists of micro-array expression data, as well as phylogenetic profiles of yeast, and includes 2417 genes and 103 predictors. In total, 14 different labels can be assigned to a gene, but only 13 labels were used due to label sparsity.

117 features

Class1 (target)nominal2 unique values
0 missing
Class2 (target)nominal2 unique values
0 missing
Class3 (target)nominal2 unique values
0 missing
Class4 (target)nominal2 unique values
0 missing
Class5 (target)nominal2 unique values
0 missing
Class6 (target)nominal2 unique values
0 missing
Class7 (target)nominal2 unique values
0 missing
Class8 (target)nominal2 unique values
0 missing
Class9 (target)nominal2 unique values
0 missing
Class10 (target)nominal2 unique values
0 missing
Class11 (target)nominal2 unique values
0 missing
Class12 (target)nominal2 unique values
0 missing
Class13 (target)nominal2 unique values
0 missing
Class14 (target)nominal2 unique values
0 missing
Att1numeric2412 unique values
0 missing
Att2numeric2406 unique values
0 missing
Att3numeric2413 unique values
0 missing
Att4numeric2407 unique values
0 missing
Att5numeric2408 unique values
0 missing
Att6numeric2407 unique values
0 missing
Att7numeric2409 unique values
0 missing
Att8numeric2405 unique values
0 missing
Att9numeric2406 unique values
0 missing
Att10numeric2415 unique values
0 missing
Att11numeric2414 unique values
0 missing
Att12numeric2406 unique values
0 missing
Att13numeric2407 unique values
0 missing
Att14numeric2406 unique values
0 missing
Att15numeric2403 unique values
0 missing
Att16numeric2409 unique values
0 missing
Att17numeric2410 unique values
0 missing
Att18numeric2409 unique values
0 missing
Att19numeric2410 unique values
0 missing
Att20numeric2409 unique values
0 missing
Att21numeric2406 unique values
0 missing
Att22numeric2409 unique values
0 missing
Att23numeric2410 unique values
0 missing
Att24numeric2406 unique values
0 missing
Att25numeric2403 unique values
0 missing
Att26numeric2411 unique values
0 missing
Att27numeric2411 unique values
0 missing
Att28numeric2410 unique values
0 missing
Att29numeric2413 unique values
0 missing
Att30numeric2408 unique values
0 missing
Att31numeric2406 unique values
0 missing
Att32numeric2412 unique values
0 missing
Att33numeric2407 unique values
0 missing
Att34numeric2407 unique values
0 missing
Att35numeric2408 unique values
0 missing
Att36numeric2410 unique values
0 missing
Att37numeric2412 unique values
0 missing
Att38numeric2404 unique values
0 missing
Att39numeric2411 unique values
0 missing
Att40numeric2407 unique values
0 missing
Att41numeric2404 unique values
0 missing
Att42numeric2404 unique values
0 missing
Att43numeric2407 unique values
0 missing
Att44numeric2404 unique values
0 missing
Att45numeric2409 unique values
0 missing
Att46numeric2414 unique values
0 missing
Att47numeric2407 unique values
0 missing
Att48numeric2406 unique values
0 missing
Att49numeric2407 unique values
0 missing
Att50numeric2411 unique values
0 missing
Att51numeric2409 unique values
0 missing
Att52numeric2408 unique values
0 missing
Att53numeric2408 unique values
0 missing
Att54numeric2409 unique values
0 missing
Att55numeric2407 unique values
0 missing
Att56numeric2406 unique values
0 missing
Att57numeric2413 unique values
0 missing
Att58numeric2411 unique values
0 missing
Att59numeric2414 unique values
0 missing
Att60numeric2405 unique values
0 missing
Att61numeric2410 unique values
0 missing
Att62numeric2405 unique values
0 missing
Att63numeric2407 unique values
0 missing
Att64numeric2401 unique values
0 missing
Att65numeric2410 unique values
0 missing
Att66numeric2411 unique values
0 missing
Att67numeric2407 unique values
0 missing
Att68numeric2405 unique values
0 missing
Att69numeric2409 unique values
0 missing
Att70numeric2412 unique values
0 missing
Att71numeric2409 unique values
0 missing
Att72numeric2408 unique values
0 missing
Att73numeric2409 unique values
0 missing
Att74numeric2412 unique values
0 missing
Att75numeric2410 unique values
0 missing
Att76numeric2407 unique values
0 missing
Att77numeric2410 unique values
0 missing
Att78numeric2408 unique values
0 missing
Att79numeric2409 unique values
0 missing
Att80numeric2407 unique values
0 missing
Att81numeric2404 unique values
0 missing
Att82numeric2408 unique values
0 missing
Att83numeric2405 unique values
0 missing
Att84numeric2400 unique values
0 missing
Att85numeric2401 unique values
0 missing
Att86numeric2393 unique values
0 missing
Att87numeric2401 unique values
0 missing
Att88numeric2401 unique values
0 missing
Att89numeric2403 unique values
0 missing
Att90numeric2408 unique values
0 missing
Att91numeric2406 unique values
0 missing
Att92numeric2403 unique values
0 missing
Att93numeric2403 unique values
0 missing
Att94numeric2410 unique values
0 missing
Att95numeric2403 unique values
0 missing
Att96numeric2401 unique values
0 missing
Att97numeric2404 unique values
0 missing
Att98numeric2404 unique values
0 missing
Att99numeric2400 unique values
0 missing
Att100numeric2401 unique values
0 missing
Att101numeric2405 unique values
0 missing
Att102numeric2408 unique values
0 missing
Att103numeric2405 unique values
0 missing

62 properties

2417
Number of instances (rows) of the dataset.
117
Number of attributes (columns) of the dataset.
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
103
Number of numeric attributes.
14
Number of nominal attributes.
0.35
Mean skewness among attributes of the numeric type.
0
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.1
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.16
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
-1.17
Minimum kurtosis among attributes of the numeric type.
11.97
Percentage of binary attributes.
0.1
Second quartile (Median) of standard deviation of attributes of the numeric type.
6.69
Maximum kurtosis among attributes of the numeric type.
-0
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
0.01
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
2.05
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
88.03
Percentage of numeric attributes.
0
Third quartile of means among attributes of the numeric type.
2
The maximum number of distinct values among attributes of the nominal type.
-0.87
Minimum skewness among attributes of the numeric type.
11.97
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.85
Maximum skewness among attributes of the numeric type.
0.09
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.62
Third quartile of skewness among attributes of the numeric type.
0.11
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.31
First quartile of kurtosis among attributes of the numeric type.
0.1
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
-0
First quartile of means among attributes of the numeric type.
0
Standard deviation of the number of distinct values among attributes of the nominal type.
1.4
Mean kurtosis among attributes of the numeric type.
14
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Mean of means among attributes of the numeric type.
-0.06
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.1
First quartile of standard deviation of attributes of the numeric type.
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
2
Average number of distinct values among the attributes of the nominal type.
0.86
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.05
Number of attributes divided by the number of instances.

9 tasks

0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task