Data
Speeddates

Speeddates

in_preparation ARFF Public Domain (CC0) Visibility: public Uploaded 10-10-2018 by J KT
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Target attribute is Match, binarized

123 features

match (target)nominal2 unique values
0 missing
indexnumeric3175 unique values
0 missing
age_Mnumeric18 unique values
0 missing
field_cd_Mnumeric15 unique values
0 missing
race_Mnumeric5 unique values
0 missing
imprace_Mnumeric10 unique values
0 missing
imprelig_Mnumeric9 unique values
0 missing
goal_Mnumeric6 unique values
0 missing
date_Mnumeric6 unique values
18 missing
go_out_Mnumeric6 unique values
0 missing
career_c_Mnumeric13 unique values
0 missing
sports_Mnumeric10 unique values
0 missing
tvsports_Mnumeric10 unique values
0 missing
exercise_Mnumeric10 unique values
0 missing
dining_Mnumeric10 unique values
0 missing
museums_Mnumeric10 unique values
0 missing
art_Mnumeric10 unique values
0 missing
hiking_Mnumeric11 unique values
0 missing
gaming_Mnumeric11 unique values
0 missing
clubbing_Mnumeric9 unique values
0 missing
reading_Mnumeric10 unique values
0 missing
tv_Mnumeric10 unique values
0 missing
theater_Mnumeric10 unique values
0 missing
movies_Mnumeric9 unique values
0 missing
concerts_Mnumeric10 unique values
0 missing
music_Mnumeric9 unique values
0 missing
shopping_Mnumeric10 unique values
0 missing
yoga_Mnumeric11 unique values
0 missing
exphappy_Mnumeric9 unique values
0 missing
attr1_1_Mnumeric66 unique values
0 missing
sinc1_1_Mnumeric64 unique values
0 missing
intel1_1_Mnumeric52 unique values
0 missing
fun1_1_Mnumeric62 unique values
0 missing
amb1_1_Mnumeric66 unique values
0 missing
shar1_1_Mnumeric62 unique values
0 missing
attr4_1_Mnumeric57 unique values
0 missing
sinc4_1_Mnumeric52 unique values
0 missing
intel4_1_Mnumeric47 unique values
0 missing
fun4_1_Mnumeric54 unique values
0 missing
amb4_1_Mnumeric58 unique values
0 missing
shar4_1_Mnumeric56 unique values
0 missing
attr2_1_Mnumeric64 unique values
0 missing
sinc2_1_Mnumeric60 unique values
0 missing
intel2_1_Mnumeric60 unique values
0 missing
fun2_1_Mnumeric62 unique values
0 missing
amb2_1_Mnumeric64 unique values
0 missing
shar2_1_Mnumeric62 unique values
0 missing
attr3_1_Mnumeric62 unique values
0 missing
sinc3_1_Mnumeric68 unique values
0 missing
fun3_1_Mnumeric70 unique values
0 missing
intel3_1_Mnumeric53 unique values
0 missing
amb3_1_Mnumeric72 unique values
0 missing
attr_o_Mnumeric16 unique values
85 missing
sinc_o_Mnumeric13 unique values
119 missing
intel_o_Mnumeric16 unique values
123 missing
fun_Mnumeric14 unique values
125 missing
amb_o_Mnumeric13 unique values
264 missing
shar_o_Mnumeric13 unique values
359 missing
like_o_Mnumeric17 unique values
88 missing
prob_o_Mnumeric16 unique values
104 missing
met_Mnumeric4 unique values
165 missing
match_es_Mnumeric15 unique values
477 missing
wavenumeric16 unique values
0 missing
age_Fnumeric18 unique values
22 missing
field_cd_Fnumeric16 unique values
0 missing
race_Fnumeric5 unique values
0 missing
imprace_Fnumeric11 unique values
0 missing
imprelig_Fnumeric10 unique values
0 missing
goal_Fnumeric6 unique values
0 missing
date_Fnumeric7 unique values
0 missing
go_out_Fnumeric6 unique values
0 missing
career_c_Fnumeric14 unique values
0 missing
sports_Fnumeric10 unique values
0 missing
tvsports_Fnumeric10 unique values
0 missing
exercise_Fnumeric10 unique values
0 missing
dining_Fnumeric8 unique values
0 missing
museums_Fnumeric9 unique values
0 missing
art_Fnumeric9 unique values
0 missing
hiking_Fnumeric10 unique values
0 missing
gaming_Fnumeric11 unique values
0 missing
clubbing_Fnumeric10 unique values
0 missing
reading_Fnumeric10 unique values
0 missing
tv_Fnumeric10 unique values
0 missing
theater_Fnumeric10 unique values
0 missing
movies_Fnumeric9 unique values
0 missing
concerts_Fnumeric10 unique values
0 missing
music_Fnumeric8 unique values
0 missing
shopping_Fnumeric10 unique values
0 missing
yoga_Fnumeric10 unique values
0 missing
exphappy_Fnumeric10 unique values
22 missing
attr1_1_Fnumeric57 unique values
0 missing
sinc1_1_Fnumeric56 unique values
0 missing
intel1_1_Fnumeric50 unique values
0 missing
fun1_1_Fnumeric49 unique values
0 missing
amb1_1_Fnumeric52 unique values
0 missing
shar1_1_Fnumeric60 unique values
0 missing
attr4_1_Fnumeric54 unique values
0 missing
sinc4_1_Fnumeric50 unique values
0 missing
intel4_1_Fnumeric49 unique values
0 missing
fun4_1_Fnumeric41 unique values
0 missing
amb4_1_Fnumeric48 unique values
0 missing
shar4_1_Fnumeric49 unique values
0 missing
attr2_1_Fnumeric64 unique values
0 missing
sinc2_1_Fnumeric62 unique values
0 missing
intel2_1_Fnumeric64 unique values
0 missing
fun2_1_Fnumeric60 unique values
0 missing
amb2_1_Fnumeric57 unique values
0 missing
shar2_1_Fnumeric61 unique values
0 missing
attr3_1_Fnumeric63 unique values
0 missing
sinc3_1_Fnumeric58 unique values
0 missing
fun3_1_Fnumeric61 unique values
0 missing
intel3_1_Fnumeric54 unique values
0 missing
amb3_1_Fnumeric66 unique values
0 missing
attr_o_Fnumeric15 unique values
86 missing
sinc_o_Fnumeric11 unique values
108 missing
intel_o_Fnumeric13 unique values
124 missing
fun_Fnumeric11 unique values
152 missing
amb_o_Fnumeric11 unique values
308 missing
shar_o_Fnumeric14 unique values
474 missing
like_o_Fnumeric14 unique values
120 missing
prob_o_Fnumeric15 unique values
145 missing
met_Fnumeric7 unique values
154 missing
match_es_Fnumeric15 unique values
411 missing

62 properties

3175
Number of instances (rows) of the dataset.
123
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
4053
Number of missing values in the dataset.
1538
Number of instances with at least one value missing.
122
Number of numeric attributes.
1
Number of nominal attributes.
0.12
Mean skewness among attributes of the numeric type.
7.48
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
11.26
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
84.35
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.02
Second quartile (Median) of skewness among attributes of the numeric type.
2678
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
-1.21
Minimum kurtosis among attributes of the numeric type.
0.81
Percentage of binary attributes.
2.6
Second quartile (Median) of standard deviation of attributes of the numeric type.
14.55
Maximum kurtosis among attributes of the numeric type.
0.65
Minimum of means among attributes of the numeric type.
48.44
Percentage of instances having missing values.
Third quartile of entropy among attributes.
1587
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
1.04
Percentage of missing values.
1.42
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
99.19
Percentage of numeric attributes.
15.39
Third quartile of means among attributes of the numeric type.
2
The maximum number of distinct values among attributes of the nominal type.
-1.17
Minimum skewness among attributes of the numeric type.
0.81
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.92
Maximum skewness among attributes of the numeric type.
0.92
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.58
Third quartile of skewness among attributes of the numeric type.
916.69
Maximum standard deviation of attributes of the numeric type.
15.65
Percentage of instances belonging to the least frequent class.
-0.38
First quartile of kurtosis among attributes of the numeric type.
5.61
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
497
Number of instances belonging to the least frequent class.
5.5
First quartile of means among attributes of the numeric type.
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.76
Mean kurtosis among attributes of the numeric type.
1
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
23.4
Mean of means among attributes of the numeric type.
-0.43
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
1.95
First quartile of standard deviation of attributes of the numeric type.
0.75
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.63
Entropy of the target attribute values.
2
Average number of distinct values among the attributes of the nominal type.
0.25
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.04
Number of attributes divided by the number of instances.

10 tasks

0 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: match
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task