Data
philippine

philippine

active ARFF Publicly available Visibility: public Uploaded 15-08-2018 by Janek Thomas
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
The goal of this challenge is to expose the research community to real world datasets of interest to 4Paradigm. All datasets are formatted in a uniform way, though the type of data might differ. The data are provided as preprocessed matrices, so that participants can focus on classification, although participants are welcome to use additional feature extraction procedures (as long as they do not violate any rule of the challenge). All problems are binary classification problems and are assessed with the normalized Area Under the ROC Curve (AUC) metric (i.e. 2*AUC-1). The identity of the datasets and the type of data is concealed, though its structure is revealed. The final score in phase 2 will be the average of rankings on all testing datasets, a ranking will be generated from such results, and winners will be determined according to such ranking. The tasks are constrained by a time budget. The Codalab platform provides computational resources shared by all participants. Each code submission will be exceuted in a compute worker with the following characteristics: 2Cores / 8G Memory / 40G SSD with Ubuntu OS. To ensure the fairness of the evaluation, when a code submission is evaluated, its execution time is limited in time. http://automl.chalearn.org/data

309 features

class (target)nominal2 unique values
0 missing
V256numeric5740 unique values
0 missing
V1numeric5784 unique values
0 missing
V257numeric5776 unique values
0 missing
V2numeric718 unique values
0 missing
V258numeric5695 unique values
0 missing
V3numeric5776 unique values
0 missing
V259numeric5790 unique values
0 missing
V4numeric5261 unique values
0 missing
V260numeric5808 unique values
0 missing
V5numeric5242 unique values
0 missing
V261numeric5794 unique values
0 missing
V6numeric5780 unique values
0 missing
V262numeric5083 unique values
0 missing
V7numeric5730 unique values
0 missing
V263numeric5728 unique values
0 missing
V8numeric5461 unique values
0 missing
V264numeric5795 unique values
0 missing
V9numeric5108 unique values
0 missing
V265numeric5794 unique values
0 missing
V10numeric113 unique values
0 missing
V266numeric5780 unique values
0 missing
V11numeric5800 unique values
0 missing
V267numeric5715 unique values
0 missing
V12numeric5458 unique values
0 missing
V268numeric99 unique values
0 missing
V13numeric5769 unique values
0 missing
V269numeric5796 unique values
0 missing
V14numeric5761 unique values
0 missing
V270numeric5738 unique values
0 missing
V15numeric5373 unique values
0 missing
V271numeric5805 unique values
0 missing
V16numeric5099 unique values
0 missing
V272numeric3724 unique values
0 missing
V17numeric495 unique values
0 missing
V273numeric5818 unique values
0 missing
V18numeric5752 unique values
0 missing
V274numeric5732 unique values
0 missing
V19numeric1669 unique values
0 missing
V275numeric5773 unique values
0 missing
V20numeric5817 unique values
0 missing
V276numeric371 unique values
0 missing
V21numeric5716 unique values
0 missing
V277numeric5779 unique values
0 missing
V22numeric5765 unique values
0 missing
V278numeric5767 unique values
0 missing
V23numeric5808 unique values
0 missing
V279numeric5774 unique values
0 missing
V24numeric5795 unique values
0 missing
V280numeric5767 unique values
0 missing
V25numeric5263 unique values
0 missing
V281numeric5794 unique values
0 missing
V26numeric169 unique values
0 missing
V282numeric637 unique values
0 missing
V27numeric3499 unique values
0 missing
V283numeric5775 unique values
0 missing
V28numeric5770 unique values
0 missing
V284numeric5461 unique values
0 missing
V29numeric5751 unique values
0 missing
V285numeric5117 unique values
0 missing
V30numeric5452 unique values
0 missing
V286numeric5793 unique values
0 missing
V31numeric5343 unique values
0 missing
V287numeric5736 unique values
0 missing
V32numeric5800 unique values
0 missing
V288numeric5434 unique values
0 missing
V33numeric5819 unique values
0 missing
V289numeric5706 unique values
0 missing
V34numeric5795 unique values
0 missing
V290numeric5780 unique values
0 missing
V35numeric5754 unique values
0 missing
V291numeric5780 unique values
0 missing
V36numeric5150 unique values
0 missing
V292numeric5797 unique values
0 missing
V37numeric5380 unique values
0 missing
V293numeric188 unique values
0 missing
V38numeric5818 unique values
0 missing
V294numeric4187 unique values
0 missing
V39numeric2730 unique values
0 missing
V295numeric5436 unique values
0 missing
V40numeric5781 unique values
0 missing
V296numeric5718 unique values
0 missing
V41numeric4014 unique values
0 missing
V297numeric2988 unique values
0 missing
V42numeric5764 unique values
0 missing
V298numeric5434 unique values
0 missing
V43numeric5772 unique values
0 missing
V299numeric5802 unique values
0 missing
V44numeric4046 unique values
0 missing
V300numeric5785 unique values
0 missing
V45numeric5785 unique values
0 missing
V301numeric2397 unique values
0 missing
V46numeric5779 unique values
0 missing
V302numeric5292 unique values
0 missing
V47numeric2227 unique values
0 missing
V303numeric5781 unique values
0 missing
V48numeric5508 unique values
0 missing
V304numeric1558 unique values
0 missing
V49numeric5773 unique values
0 missing
V305numeric5490 unique values
0 missing
V50numeric5797 unique values
0 missing
V306numeric5265 unique values
0 missing
V51numeric5444 unique values
0 missing
V307numeric5783 unique values
0 missing
V52numeric5341 unique values
0 missing
V308numeric188 unique values
0 missing
V53numeric1540 unique values
0 missing
V54numeric5732 unique values
0 missing
V55numeric5671 unique values
0 missing
V56numeric5763 unique values
0 missing
V57numeric1504 unique values
0 missing
V58numeric5773 unique values
0 missing
V59numeric3406 unique values
0 missing
V60numeric5784 unique values
0 missing
V61numeric5748 unique values
0 missing
V62numeric113 unique values
0 missing
V63numeric5787 unique values
0 missing
V64numeric5447 unique values
0 missing
V65numeric5747 unique values
0 missing
V66numeric5816 unique values
0 missing
V67numeric5781 unique values
0 missing
V68numeric114 unique values
0 missing
V69numeric5178 unique values
0 missing
V70numeric5778 unique values
0 missing
V71numeric4535 unique values
0 missing
V72numeric5785 unique values
0 missing
V73numeric5450 unique values
0 missing
V74numeric5817 unique values
0 missing
V75numeric5809 unique values
0 missing
V76numeric5800 unique values
0 missing
V77numeric5820 unique values
0 missing
V78numeric3956 unique values
0 missing
V79numeric5391 unique values
0 missing
V80numeric5784 unique values
0 missing
V81numeric5746 unique values
0 missing
V82numeric5820 unique values
0 missing
V83numeric5730 unique values
0 missing
V84numeric5815 unique values
0 missing
V85numeric5759 unique values
0 missing
V86numeric5283 unique values
0 missing
V87numeric5106 unique values
0 missing
V88numeric5787 unique values
0 missing
V89numeric5793 unique values
0 missing
V90numeric477 unique values
0 missing
V91numeric5809 unique values
0 missing
V92numeric5757 unique values
0 missing
V93numeric5757 unique values
0 missing
V94numeric5795 unique values
0 missing
V95numeric5462 unique values
0 missing
V96numeric5822 unique values
0 missing
V97numeric5271 unique values
0 missing
V98numeric5776 unique values
0 missing
V99numeric5800 unique values
0 missing
V100numeric5360 unique values
0 missing
V101numeric5092 unique values
0 missing
V102numeric5783 unique values
0 missing
V103numeric5822 unique values
0 missing
V104numeric113 unique values
0 missing
V105numeric4535 unique values
0 missing
V106numeric5479 unique values
0 missing
V107numeric5452 unique values
0 missing
V108numeric5102 unique values
0 missing
V109numeric5413 unique values
0 missing
V110numeric5237 unique values
0 missing
V111numeric5125 unique values
0 missing
V112numeric4187 unique values
0 missing
V113numeric5266 unique values
0 missing
V114numeric2220 unique values
0 missing
V115numeric5422 unique values
0 missing
V116numeric4705 unique values
0 missing
V117numeric727 unique values
0 missing
V118numeric5774 unique values
0 missing
V119numeric5809 unique values
0 missing
V120numeric5780 unique values
0 missing
V121numeric5730 unique values
0 missing
V122numeric5767 unique values
0 missing
V123numeric5801 unique values
0 missing
V124numeric5419 unique values
0 missing
V125numeric5793 unique values
0 missing
V126numeric5816 unique values
0 missing
V127numeric5686 unique values
0 missing
V128numeric5773 unique values
0 missing
V129numeric179 unique values
0 missing
V130numeric116 unique values
0 missing
V131numeric5782 unique values
0 missing
V132numeric188 unique values
0 missing
V133numeric5779 unique values
0 missing
V134numeric5426 unique values
0 missing
V135numeric5396 unique values
0 missing
V136numeric5787 unique values
0 missing
V137numeric5774 unique values
0 missing
V138numeric5796 unique values
0 missing
V139numeric5685 unique values
0 missing
V140numeric5286 unique values
0 missing
V141numeric5808 unique values
0 missing
V142numeric1506 unique values
0 missing
V143numeric5714 unique values
0 missing
V144numeric5714 unique values
0 missing
V145numeric5775 unique values
0 missing
V146numeric5787 unique values
0 missing
V147numeric99 unique values
0 missing
V148numeric5797 unique values
0 missing
V149numeric1558 unique values
0 missing
V150numeric5129 unique values
0 missing
V151numeric5775 unique values
0 missing
V152numeric116 unique values
0 missing
V153numeric5784 unique values
0 missing
V154numeric5735 unique values
0 missing
V155numeric5751 unique values
0 missing
V156numeric477 unique values
0 missing
V157numeric5816 unique values
0 missing
V158numeric5773 unique values
0 missing
V159numeric492 unique values
0 missing
V160numeric2416 unique values
0 missing
V161numeric5820 unique values
0 missing
V162numeric5795 unique values
0 missing
V163numeric5822 unique values
0 missing
V164numeric180 unique values
0 missing
V165numeric5817 unique values
0 missing
V166numeric5730 unique values
0 missing
V167numeric5817 unique values
0 missing
V168numeric90 unique values
0 missing
V169numeric5780 unique values
0 missing
V170numeric5742 unique values
0 missing
V171numeric5412 unique values
0 missing
V172numeric5782 unique values
0 missing
V173numeric5157 unique values
0 missing
V174numeric5799 unique values
0 missing
V175numeric90 unique values
0 missing
V176numeric5479 unique values
0 missing
V177numeric5735 unique values
0 missing
V178numeric5764 unique values
0 missing
V179numeric5738 unique values
0 missing
V180numeric5666 unique values
0 missing
V181numeric4457 unique values
0 missing
V182numeric113 unique values
0 missing
V183numeric188 unique values
0 missing
V184numeric5786 unique values
0 missing
V185numeric4587 unique values
0 missing
V186numeric5767 unique values
0 missing
V187numeric5790 unique values
0 missing
V188numeric5815 unique values
0 missing
V189numeric5770 unique values
0 missing
V190numeric422 unique values
0 missing
V191numeric5472 unique values
0 missing
V192numeric5728 unique values
0 missing
V193numeric5798 unique values
0 missing
V194numeric687 unique values
0 missing
V195numeric5492 unique values
0 missing
V196numeric5363 unique values
0 missing
V197numeric5724 unique values
0 missing
V198numeric5794 unique values
0 missing
V199numeric471 unique values
0 missing
V200numeric5769 unique values
0 missing
V201numeric5764 unique values
0 missing
V202numeric179 unique values
0 missing
V203numeric5795 unique values
0 missing
V204numeric5788 unique values
0 missing
V205numeric5688 unique values
0 missing
V206numeric5816 unique values
0 missing
V207numeric5115 unique values
0 missing
V208numeric5727 unique values
0 missing
V209numeric5720 unique values
0 missing
V210numeric3629 unique values
0 missing
V211numeric5815 unique values
0 missing
V212numeric5501 unique values
0 missing
V213numeric758 unique values
0 missing
V214numeric5782 unique values
0 missing
V215numeric5781 unique values
0 missing
V216numeric5787 unique values
0 missing
V217numeric2741 unique values
0 missing
V218numeric736 unique values
0 missing
V219numeric5394 unique values
0 missing
V220numeric5774 unique values
0 missing
V221numeric5787 unique values
0 missing
V222numeric5754 unique values
0 missing
V223numeric5737 unique values
0 missing
V224numeric2454 unique values
0 missing
V225numeric3724 unique values
0 missing
V226numeric4618 unique values
0 missing
V227numeric5458 unique values
0 missing
V228numeric5816 unique values
0 missing
V229numeric5789 unique values
0 missing
V230numeric4046 unique values
0 missing
V231numeric31 unique values
0 missing
V232numeric2397 unique values
0 missing
V233numeric99 unique values
0 missing
V234numeric5725 unique values
0 missing
V235numeric5811 unique values
0 missing
V236numeric5792 unique values
0 missing
V237numeric5785 unique values
0 missing
V238numeric5419 unique values
0 missing
V239numeric5425 unique values
0 missing
V240numeric5747 unique values
0 missing
V241numeric5120 unique values
0 missing
V242numeric5774 unique values
0 missing
V243numeric5799 unique values
0 missing
V244numeric4051 unique values
0 missing
V245numeric5673 unique values
0 missing
V246numeric5708 unique values
0 missing
V247numeric5785 unique values
0 missing
V248numeric5751 unique values
0 missing
V249numeric5780 unique values
0 missing
V250numeric5109 unique values
0 missing
V251numeric4407 unique values
0 missing
V252numeric91 unique values
0 missing
V253numeric5787 unique values
0 missing
V254numeric5791 unique values
0 missing
V255numeric5736 unique values
0 missing

62 properties

5832
Number of instances (rows) of the dataset.
309
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
308
Number of numeric attributes.
1
Number of nominal attributes.
2.72
Mean skewness among attributes of the numeric type.
4.47
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
3750.13
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
50
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.58
Second quartile (Median) of skewness among attributes of the numeric type.
2916
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
-1.26
Minimum kurtosis among attributes of the numeric type.
0.32
Percentage of binary attributes.
2.73
Second quartile (Median) of standard deviation of attributes of the numeric type.
4255.39
Maximum kurtosis among attributes of the numeric type.
-1.14
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
202871.81
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
13.12
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
99.68
Percentage of numeric attributes.
120.51
Third quartile of means among attributes of the numeric type.
2
The maximum number of distinct values among attributes of the nominal type.
-7.71
Minimum skewness among attributes of the numeric type.
0.32
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
62.13
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
2.28
Third quartile of skewness among attributes of the numeric type.
95601.73
Maximum standard deviation of attributes of the numeric type.
50
Percentage of instances belonging to the least frequent class.
-0.12
First quartile of kurtosis among attributes of the numeric type.
44.47
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
2916
Number of instances belonging to the least frequent class.
0.06
First quartile of means among attributes of the numeric type.
0
Standard deviation of the number of distinct values among attributes of the nominal type.
102.36
Mean kurtosis among attributes of the numeric type.
1
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
6707.76
Mean of means among attributes of the numeric type.
0
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.11
First quartile of standard deviation of attributes of the numeric type.
0.5
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
1
Entropy of the target attribute values.
2
Average number of distinct values among the attributes of the nominal type.
1.28
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.05
Number of attributes divided by the number of instances.

17 tasks

1 runs - estimation_procedure: 33% Holdout set - target_feature: class
0 runs - estimation_procedure: 4-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task