Data
jasmine

jasmine

active ARFF Publicly available Visibility: public Uploaded 15-08-2018 by Janek Thomas
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • Artificial Intelligence chalearn Computational Science Data Science study_218
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
SOURCE: [ChaLearn Automatic Machine Learning Challenge (AutoML)](https://competitions.codalab.org/competitions/2321), [ChaLearn](https://automl.chalearn.org/data) This is a "supervised learning" challenge in machine learning. We are making available 30 datasets, all pre-formatted in given feature representations (this means that each example consists of a fixed number of numerical coefficients). The challenge is to solve classification and regression problems, without any further human intervention. The difficulty is that there is a broad diversity of data types and distributions (including balanced or unbalanced classes, sparse or dense feature representations, with or without missing values or categorical variables, various metrics of evaluation, various proportions of number of features and number of examples). The problems are drawn from a wide variety of domains and include medical diagnosis from laboratory analyses, speech recognition, credit rating, prediction or drug toxicity or efficacy, classification of text, prediction of customer satisfaction, object recognition, protein structure prediction, action recognition in video data, etc. While there exist machine learning toolkits including methods that can solve all these problems, it is still considerable human effort to find, for a given combination of dataset, task, metric of evaluation, and available computational time, the combination of methods and hyper-parameter setting that is best suited. Your challenge is to create the "perfect black box" eliminating the human in the loop. This is a challenge with code submission: your code will be executed automatically on our servers to train and test your learning machines with unknown datasets. However, there is NO OBLIGATION TO SUBMIT CODE. Half of the prizes can be won by just submitting prediction results. There are six rounds (Prep, Novice, Intermediate, Advanced, Expert, and Master) in which datasets of progressive difficulty are introduced (5 per round). There is NO PREREQUISITE TO PARTICIPATE IN PREVIOUS ROUNDS to enter a new round. The rounds alternate AutoML phases in which submitted code is "blind tested" in limited time on our platform, using datasets you have never seen before, and Tweakathon phases giving you time to improve your methods by tweaking them on those datasets and running them on your own systems (without computational resource limitation). NOTE: This dataset corresponds to one of the datasets of the challenge.

145 features

class (target)nominal2 unique values
0 missing
V1nominal2 unique values
0 missing
V2nominal2 unique values
0 missing
V3nominal2 unique values
0 missing
V4nominal2 unique values
0 missing
V5nominal2 unique values
0 missing
V6nominal2 unique values
0 missing
V7nominal2 unique values
0 missing
V8nominal2 unique values
0 missing
V9nominal2 unique values
0 missing
V10nominal2 unique values
0 missing
V11nominal2 unique values
0 missing
V12nominal2 unique values
0 missing
V13numeric124 unique values
0 missing
V14nominal2 unique values
0 missing
V15nominal2 unique values
0 missing
V16nominal2 unique values
0 missing
V17nominal2 unique values
0 missing
V18nominal2 unique values
0 missing
V19nominal2 unique values
0 missing
V20nominal2 unique values
0 missing
V21nominal2 unique values
0 missing
V22nominal2 unique values
0 missing
V23numeric117 unique values
0 missing
V24nominal2 unique values
0 missing
V25nominal2 unique values
0 missing
V26nominal2 unique values
0 missing
V27nominal2 unique values
0 missing
V28nominal2 unique values
0 missing
V29nominal2 unique values
0 missing
V30nominal2 unique values
0 missing
V31nominal2 unique values
0 missing
V32nominal2 unique values
0 missing
V33nominal2 unique values
0 missing
V34nominal2 unique values
0 missing
V35nominal2 unique values
0 missing
V36nominal2 unique values
0 missing
V37nominal2 unique values
0 missing
V38nominal2 unique values
0 missing
V39nominal2 unique values
0 missing
V40nominal2 unique values
0 missing
V41nominal2 unique values
0 missing
V42nominal2 unique values
0 missing
V43numeric81 unique values
0 missing
V44nominal2 unique values
0 missing
V45numeric15 unique values
0 missing
V46nominal2 unique values
0 missing
V47nominal2 unique values
0 missing
V48nominal2 unique values
0 missing
V49nominal2 unique values
0 missing
V50nominal2 unique values
0 missing
V51nominal2 unique values
0 missing
V52nominal2 unique values
0 missing
V53nominal2 unique values
0 missing
V54nominal2 unique values
0 missing
V55nominal2 unique values
0 missing
V56numeric1470 unique values
0 missing
V57nominal2 unique values
0 missing
V58nominal2 unique values
0 missing
V59numeric139 unique values
0 missing
V60nominal2 unique values
0 missing
V61nominal2 unique values
0 missing
V62nominal2 unique values
0 missing
V63nominal2 unique values
0 missing
V64nominal2 unique values
0 missing
V65nominal2 unique values
0 missing
V66nominal2 unique values
0 missing
V67nominal2 unique values
0 missing
V68nominal2 unique values
0 missing
V69nominal2 unique values
0 missing
V70nominal2 unique values
0 missing
V71nominal2 unique values
0 missing
V72nominal2 unique values
0 missing
V73nominal2 unique values
0 missing
V74nominal2 unique values
0 missing
V75nominal2 unique values
0 missing
V76nominal2 unique values
0 missing
V77nominal2 unique values
0 missing
V78nominal2 unique values
0 missing
V79nominal2 unique values
0 missing
V80nominal2 unique values
0 missing
V81nominal2 unique values
0 missing
V82nominal2 unique values
0 missing
V83nominal2 unique values
0 missing
V84nominal2 unique values
0 missing
V85nominal2 unique values
0 missing
V86nominal2 unique values
0 missing
V87nominal2 unique values
0 missing
V88nominal2 unique values
0 missing
V89nominal2 unique values
0 missing
V90nominal2 unique values
0 missing
V91nominal2 unique values
0 missing
V92nominal2 unique values
0 missing
V93nominal2 unique values
0 missing
V94nominal2 unique values
0 missing
V95nominal2 unique values
0 missing
V96nominal2 unique values
0 missing
V97nominal2 unique values
0 missing
V98nominal2 unique values
0 missing
V99nominal2 unique values
0 missing
V100nominal2 unique values
0 missing
V101nominal2 unique values
0 missing
V102nominal2 unique values
0 missing
V103nominal2 unique values
0 missing
V104nominal2 unique values
0 missing
V105nominal2 unique values
0 missing
V106nominal2 unique values
0 missing
V107nominal2 unique values
0 missing
V108nominal2 unique values
0 missing
V109nominal2 unique values
0 missing
V110nominal2 unique values
0 missing
V111nominal2 unique values
0 missing
V112nominal2 unique values
0 missing
V113nominal2 unique values
0 missing
V114nominal2 unique values
0 missing
V115nominal2 unique values
0 missing
V116nominal2 unique values
0 missing
V117nominal2 unique values
0 missing
V118nominal2 unique values
0 missing
V119nominal2 unique values
0 missing
V120nominal2 unique values
0 missing
V121nominal2 unique values
0 missing
V122nominal2 unique values
0 missing
V123nominal2 unique values
0 missing
V124nominal2 unique values
0 missing
V125nominal2 unique values
0 missing
V126numeric127 unique values
0 missing
V127nominal2 unique values
0 missing
V128nominal2 unique values
0 missing
V129nominal2 unique values
0 missing
V130nominal2 unique values
0 missing
V131numeric120 unique values
0 missing
V132nominal2 unique values
0 missing
V133nominal2 unique values
0 missing
V134nominal2 unique values
0 missing
V135nominal2 unique values
0 missing
V136nominal2 unique values
0 missing
V137nominal2 unique values
0 missing
V138nominal2 unique values
0 missing
V139nominal2 unique values
0 missing
V140nominal2 unique values
0 missing
V141nominal2 unique values
0 missing
V142nominal2 unique values
0 missing
V143nominal2 unique values
0 missing
V144nominal2 unique values
0 missing

62 properties

2984
Number of instances (rows) of the dataset.
145
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
8
Number of numeric attributes.
137
Number of nominal attributes.
6.27
Mean skewness among attributes of the numeric type.
-0.55
Second quartile (Median) of means among attributes of the numeric type.
41.91
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.94
Mean standard deviation of attributes of the numeric type.
0
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
50
Percentage of instances belonging to the most frequent class.
0
Minimal entropy among attributes.
8.66
Second quartile (Median) of skewness among attributes of the numeric type.
1492
Number of instances belonging to the most frequent class.
1
Maximum entropy among attributes.
1.37
Minimum kurtosis among attributes of the numeric type.
94.48
Percentage of binary attributes.
0.85
Second quartile (Median) of standard deviation of attributes of the numeric type.
108.47
Maximum kurtosis among attributes of the numeric type.
-0.56
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
0.86
Third quartile of entropy among attributes.
2.17
Maximum of means among attributes of the numeric type.
0
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
98.26
Third quartile of kurtosis among attributes of the numeric type.
0.23
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
5.52
Percentage of numeric attributes.
1.15
Third quartile of means among attributes of the numeric type.
2
The maximum number of distinct values among attributes of the nominal type.
0.97
Minimum skewness among attributes of the numeric type.
94.48
Percentage of nominal attributes.
0.02
Third quartile of mutual information between the nominal attributes and the target attribute.
9.96
Maximum skewness among attributes of the numeric type.
0.38
Minimum standard deviation of attributes of the numeric type.
0.26
First quartile of entropy among attributes.
9.68
Third quartile of skewness among attributes of the numeric type.
2.18
Maximum standard deviation of attributes of the numeric type.
50
Percentage of instances belonging to the least frequent class.
3.57
First quartile of kurtosis among attributes of the numeric type.
0.99
Third quartile of standard deviation of attributes of the numeric type.
0.52
Average entropy of the attributes.
1492
Number of instances belonging to the least frequent class.
-0.56
First quartile of means among attributes of the numeric type.
0
Standard deviation of the number of distinct values among attributes of the nominal type.
58.07
Mean kurtosis among attributes of the numeric type.
137
Number of binary attributes.
0
First quartile of mutual information between the nominal attributes and the target attribute.
0.2
Mean of means among attributes of the numeric type.
1.24
First quartile of skewness among attributes of the numeric type.
0.02
Average mutual information between the nominal attributes and the target attribute.
0.63
First quartile of standard deviation of attributes of the numeric type.
0.51
Average class difference between consecutive instances.
20.67
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0.45
Second quartile (Median) of entropy among attributes.
1
Entropy of the target attribute values.
2
Average number of distinct values among the attributes of the nominal type.
76.81
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.05
Number of attributes divided by the number of instances.

19 tasks

4 runs - estimation_procedure: 33% Holdout set - target_feature: class
3 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: class
1 runs - estimation_procedure: 10 times 10-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 20% Holdout (Ordered) - target_feature: class
0 runs - estimation_procedure: 4-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task