Data
APSFailure

APSFailure

active ARFF Public Domain (CC0) Visibility: public Uploaded 15-08-2018 by Pieter Gijsbers
0 likes downloaded by 2 people , 2 total downloads 0 issues 0 downvotes
  • Computer Systems Machine Learning study_218 UCI study_271 study_240 study_226
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This is the dataset used for the 2016 IDA Industrial Challenge, courtesy of Scania. For a full description, see http://archive.ics.uci.edu/ml/datasets/IDA2016Challenge . This dataset contains both the train and test set provided. The first 60000 samples are the train set, and the last 16000 samples are the test set. Data was published under the GNU GPL v3 license.

171 features

class (target)nominal2 unique values
0 missing
aa_000numeric25211 unique values
0 missing
ab_000numeric30 unique values
58692 missing
ac_000numeric2229 unique values
4261 missing
ad_000numeric2027 unique values
18842 missing
ae_000numeric355 unique values
3190 missing
af_000numeric458 unique values
3190 missing
ag_000numeric198 unique values
860 missing
ag_001numeric795 unique values
860 missing
ag_002numeric2952 unique values
860 missing
ag_003numeric9383 unique values
860 missing
ag_004numeric26854 unique values
860 missing
ag_005numeric48327 unique values
860 missing
ag_006numeric48480 unique values
860 missing
ag_007numeric38289 unique values
860 missing
ag_008numeric21563 unique values
860 missing
ag_009numeric5923 unique values
860 missing
ah_000numeric52008 unique values
820 missing
ai_000numeric4804 unique values
792 missing
aj_000numeric1031 unique values
792 missing
ak_000numeric194 unique values
5598 missing
al_000numeric10456 unique values
811 missing
am_0numeric12214 unique values
792 missing
an_000numeric57987 unique values
811 missing
ao_000numeric57386 unique values
751 missing
ap_000numeric53131 unique values
811 missing
aq_000numeric41140 unique values
751 missing
ar_000numeric72 unique values
3487 missing
as_000numeric30 unique values
792 missing
at_000numeric4025 unique values
792 missing
au_000numeric71 unique values
792 missing
av_000numeric4220 unique values
3188 missing
ax_000numeric2415 unique values
3189 missing
ay_000numeric575 unique values
863 missing
ay_001numeric1110 unique values
863 missing
ay_002numeric1194 unique values
863 missing
ay_003numeric1249 unique values
863 missing
ay_004numeric2126 unique values
863 missing
ay_005numeric22880 unique values
863 missing
ay_006numeric41538 unique values
863 missing
ay_007numeric46022 unique values
863 missing
ay_008numeric44763 unique values
863 missing
ay_009numeric568 unique values
863 missing
az_000numeric10290 unique values
863 missing
az_001numeric8287 unique values
863 missing
az_002numeric10236 unique values
863 missing
az_003numeric24771 unique values
863 missing
az_004numeric40463 unique values
863 missing
az_005numeric53355 unique values
863 missing
az_006numeric14147 unique values
863 missing
az_007numeric4563 unique values
863 missing
az_008numeric1453 unique values
863 missing
az_009numeric386 unique values
863 missing
ba_000numeric53546 unique values
881 missing
ba_001numeric47871 unique values
881 missing
ba_002numeric42462 unique values
881 missing
ba_003numeric38700 unique values
881 missing
ba_004numeric36076 unique values
881 missing
ba_005numeric34937 unique values
881 missing
ba_006numeric34658 unique values
881 missing
ba_007numeric29876 unique values
881 missing
ba_008numeric13925 unique values
881 missing
ba_009numeric8088 unique values
881 missing
bb_000numeric59705 unique values
820 missing
bc_000numeric3122 unique values
3489 missing
bd_000numeric3944 unique values
3491 missing
be_000numeric4367 unique values
3193 missing
bf_000numeric1219 unique values
3189 missing
bg_000numeric52012 unique values
811 missing
bh_000numeric29068 unique values
811 missing
bi_000numeric49750 unique values
751 missing
bj_000numeric45121 unique values
751 missing
bk_000numeric14029 unique values
29128 missing
bl_000numeric13085 unique values
34503 missing
bm_000numeric10254 unique values
50095 missing
bn_000numeric8216 unique values
55722 missing
bo_000numeric6828 unique values
58709 missing
bp_000numeric5863 unique values
60461 missing
bq_000numeric5116 unique values
61703 missing
br_000numeric4607 unique values
62393 missing
bs_000numeric13714 unique values
928 missing
bt_000numeric54523 unique values
195 missing
bu_000numeric59653 unique values
881 missing
bv_000numeric59649 unique values
881 missing
bx_000numeric66034 unique values
4123 missing
by_000numeric25856 unique values
580 missing
bz_000numeric19260 unique values
3486 missing
ca_000numeric31826 unique values
5562 missing
cb_000numeric33989 unique values
928 missing
cc_000numeric52485 unique values
4120 missing
cd_000numeric1 unique values
861 missing
ce_000numeric25505 unique values
3190 missing
cf_000numeric583 unique values
18842 missing
cg_000numeric716 unique values
18842 missing
ch_000numeric2 unique values
18842 missing
ci_000numeric55003 unique values
424 missing
cj_000numeric9091 unique values
424 missing
ck_000numeric53627 unique values
424 missing
cl_000numeric1089 unique values
12012 missing
cm_000numeric2346 unique values
12455 missing
cn_000numeric1873 unique values
881 missing
cn_001numeric6456 unique values
881 missing
cn_002numeric17134 unique values
881 missing
cn_003numeric39883 unique values
881 missing
cn_004numeric50096 unique values
881 missing
cn_005numeric46037 unique values
881 missing
cn_006numeric38608 unique values
881 missing
cn_007numeric25025 unique values
881 missing
cn_008numeric11139 unique values
881 missing
cn_009numeric3430 unique values
881 missing
co_000numeric2045 unique values
18842 missing
cp_000numeric2569 unique values
3487 missing
cq_000numeric59651 unique values
881 missing
cr_000numeric86 unique values
58692 missing
cs_000numeric10172 unique values
858 missing
cs_001numeric3714 unique values
858 missing
cs_002numeric33134 unique values
858 missing
cs_003numeric41631 unique values
858 missing
cs_004numeric40803 unique values
858 missing
cs_005numeric50808 unique values
858 missing
cs_006numeric48557 unique values
858 missing
cs_007numeric18939 unique values
858 missing
cs_008numeric820 unique values
858 missing
cs_009numeric64 unique values
858 missing
ct_000numeric2824 unique values
17526 missing
cu_000numeric3818 unique values
17526 missing
cv_000numeric38941 unique values
17526 missing
cx_000numeric29452 unique values
17526 missing
cy_000numeric836 unique values
17526 missing
cz_000numeric12163 unique values
17526 missing
da_000numeric290 unique values
17526 missing
db_000numeric149 unique values
17526 missing
dc_000numeric39278 unique values
17526 missing
dd_000numeric7226 unique values
3191 missing
de_000numeric2087 unique values
3488 missing
df_000numeric466 unique values
5102 missing
dg_000numeric1620 unique values
5102 missing
dh_000numeric1195 unique values
5102 missing
di_000numeric6670 unique values
5100 missing
dj_000numeric80 unique values
5101 missing
dk_000numeric313 unique values
5101 missing
dl_000numeric217 unique values
5102 missing
dm_000numeric278 unique values
5103 missing
dn_000numeric23935 unique values
881 missing
do_000numeric23340 unique values
3488 missing
dp_000numeric12599 unique values
3490 missing
dq_000numeric9587 unique values
3490 missing
dr_000numeric7878 unique values
3490 missing
ds_000numeric30563 unique values
3491 missing
dt_000numeric17596 unique values
3491 missing
du_000numeric33450 unique values
3490 missing
dv_000numeric35505 unique values
3490 missing
dx_000numeric18079 unique values
3487 missing
dy_000numeric7342 unique values
3488 missing
dz_000numeric51 unique values
3485 missing
ea_000numeric141 unique values
3485 missing
eb_000numeric33325 unique values
5101 missing
ec_00numeric36263 unique values
12883 missing
ed_000numeric4314 unique values
12012 missing
ee_000numeric49556 unique values
863 missing
ee_001numeric45032 unique values
863 missing
ee_002numeric40696 unique values
863 missing
ee_003numeric37291 unique values
863 missing
ee_004numeric41657 unique values
863 missing
ee_005numeric43051 unique values
863 missing
ee_006numeric37560 unique values
863 missing
ee_007numeric35859 unique values
863 missing
ee_008numeric28412 unique values
863 missing
ee_009numeric10947 unique values
863 missing
ef_000numeric30 unique values
3486 missing
eg_000numeric55 unique values
3485 missing

62 properties

76000
Number of instances (rows) of the dataset.
171
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
1078695
Number of missing values in the dataset.
75244
Number of instances with at least one value missing.
170
Number of numeric attributes.
1
Number of nominal attributes.
0.58
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2
The maximum number of distinct values among attributes of the nominal type.
0.43
Minimum skewness among attributes of the numeric type.
First quartile of entropy among attributes.
56.9
Third quartile of skewness among attributes of the numeric type.
239.08
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
146.3
First quartile of kurtosis among attributes of the numeric type.
1748705.19
Third quartile of standard deviation of attributes of the numeric type.
795252963.78
Maximum standard deviation of attributes of the numeric type.
1.81
Percentage of instances belonging to the least frequent class.
2423.94
First quartile of means among attributes of the numeric type.
0
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
1375
Number of instances belonging to the least frequent class.
First quartile of mutual information between the nominal attributes and the target attribute.
5752
Mean kurtosis among attributes of the numeric type.
1
Number of binary attributes.
9.36
First quartile of skewness among attributes of the numeric type.
2695276.09
Mean of means among attributes of the numeric type.
36212.07
First quartile of standard deviation of attributes of the numeric type.
0.96
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
Second quartile (Median) of entropy among attributes.
0.13
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
740.07
Second quartile (Median) of kurtosis among attributes of the numeric type.
0
Number of attributes divided by the number of instances.
2
Average number of distinct values among the attributes of the nominal type.
64502.77
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
43.85
Mean skewness among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
98.19
Percentage of instances belonging to the most frequent class.
7541433.7
Mean standard deviation of attributes of the numeric type.
19.52
Second quartile (Median) of skewness among attributes of the numeric type.
74625
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
418175.92
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-1.63
Minimum kurtosis among attributes of the numeric type.
0.58
Percentage of binary attributes.
Third quartile of entropy among attributes.
57237.51
Maximum kurtosis among attributes of the numeric type.
0
Minimum of means among attributes of the numeric type.
99.01
Percentage of instances having missing values.
4910.62
Third quartile of kurtosis among attributes of the numeric type.
356439779.88
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
8.3
Percentage of missing values.
99.42
Percentage of numeric attributes.
513404.33
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.

19 tasks

7 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: class
2 runs - estimation_procedure: 33% Holdout set - target_feature: class
0 runs - estimation_procedure: 20% Holdout (Ordered) - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 4-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task