Data
Silhouette

Silhouette

in_preparation ARFF Public Domain (CC0) Visibility: public Uploaded 04-06-2018 by Bilge Celik
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Artificially generated data of silhouettes given poses. Note that the data does not display a left/right ambiguity because across the entire data set one of the arms sticks out more the the other, disambiguating the pose as to which way the individual is facing.

163 features

0numeric2345 unique values
0 missing
1numeric2345 unique values
0 missing
2numeric2345 unique values
0 missing
3numeric2345 unique values
0 missing
4numeric2345 unique values
0 missing
5numeric2345 unique values
0 missing
6numeric2345 unique values
0 missing
7numeric2344 unique values
0 missing
8numeric2345 unique values
0 missing
9numeric2345 unique values
0 missing
10numeric2345 unique values
0 missing
11numeric2345 unique values
0 missing
12numeric2345 unique values
0 missing
13numeric2345 unique values
0 missing
14numeric2345 unique values
0 missing
15numeric2345 unique values
0 missing
16numeric2345 unique values
0 missing
17numeric2345 unique values
0 missing
18numeric2345 unique values
0 missing
19numeric2345 unique values
0 missing
20numeric2345 unique values
0 missing
21numeric2345 unique values
0 missing
22numeric2345 unique values
0 missing
23numeric2345 unique values
0 missing
24numeric2345 unique values
0 missing
25numeric2345 unique values
0 missing
26numeric2345 unique values
0 missing
27numeric2345 unique values
0 missing
28numeric2345 unique values
0 missing
29numeric2345 unique values
0 missing
30numeric2345 unique values
0 missing
31numeric2345 unique values
0 missing
32numeric2345 unique values
0 missing
33numeric2345 unique values
0 missing
34numeric2345 unique values
0 missing
35numeric2345 unique values
0 missing
36numeric2345 unique values
0 missing
37numeric2345 unique values
0 missing
38numeric2345 unique values
0 missing
39numeric2345 unique values
0 missing
40numeric2345 unique values
0 missing
41numeric2345 unique values
0 missing
42numeric2345 unique values
0 missing
43numeric2345 unique values
0 missing
44numeric2345 unique values
0 missing
45numeric2345 unique values
0 missing
46numeric2345 unique values
0 missing
47numeric2345 unique values
0 missing
48numeric2345 unique values
0 missing
49numeric2345 unique values
0 missing
50numeric2345 unique values
0 missing
51numeric2345 unique values
0 missing
52numeric2345 unique values
0 missing
53numeric2345 unique values
0 missing
54numeric2345 unique values
0 missing
55numeric2345 unique values
0 missing
56numeric2345 unique values
0 missing
57numeric2345 unique values
0 missing
58numeric2345 unique values
0 missing
59numeric2345 unique values
0 missing
60numeric2345 unique values
0 missing
61numeric2345 unique values
0 missing
62numeric2345 unique values
0 missing
63numeric2345 unique values
0 missing
64numeric2345 unique values
0 missing
65numeric2345 unique values
0 missing
66numeric2345 unique values
0 missing
67numeric2345 unique values
0 missing
68numeric2345 unique values
0 missing
69numeric2345 unique values
0 missing
70numeric2345 unique values
0 missing
71numeric2345 unique values
0 missing
72numeric2345 unique values
0 missing
73numeric2345 unique values
0 missing
74numeric2345 unique values
0 missing
75numeric2345 unique values
0 missing
76numeric2345 unique values
0 missing
77numeric2345 unique values
0 missing
78numeric2345 unique values
0 missing
79numeric2345 unique values
0 missing
80numeric2345 unique values
0 missing
81numeric2345 unique values
0 missing
82numeric2345 unique values
0 missing
83numeric2345 unique values
0 missing
84numeric2345 unique values
0 missing
85numeric2345 unique values
0 missing
86numeric2345 unique values
0 missing
87numeric2345 unique values
0 missing
88numeric2345 unique values
0 missing
89numeric2345 unique values
0 missing
90numeric2345 unique values
0 missing
91numeric2345 unique values
0 missing
92numeric2345 unique values
0 missing
93numeric2345 unique values
0 missing
94numeric2345 unique values
0 missing
95numeric2345 unique values
0 missing
96numeric2345 unique values
0 missing
97numeric2345 unique values
0 missing
98numeric2345 unique values
0 missing
99numeric2345 unique values
0 missing
y0numeric1 unique values
0 missing
y1numeric1 unique values
0 missing
y2numeric1 unique values
0 missing
y3numeric1 unique values
0 missing
y4numeric1 unique values
0 missing
y5numeric1 unique values
0 missing
y6numeric2345 unique values
0 missing
y7numeric2345 unique values
0 missing
y8numeric2345 unique values
0 missing
y9numeric2345 unique values
0 missing
y10numeric2345 unique values
0 missing
y11numeric2345 unique values
0 missing
y12numeric2345 unique values
0 missing
y13numeric2345 unique values
0 missing
y14numeric2345 unique values
0 missing
y15numeric2345 unique values
0 missing
y16numeric2345 unique values
0 missing
y17numeric2345 unique values
0 missing
y18numeric2345 unique values
0 missing
y19numeric2345 unique values
0 missing
y20numeric2345 unique values
0 missing
y21numeric2345 unique values
0 missing
y22numeric2345 unique values
0 missing
y23numeric2345 unique values
0 missing
y24numeric2345 unique values
0 missing
y25numeric2345 unique values
0 missing
y26numeric2345 unique values
0 missing
y27numeric2345 unique values
0 missing
y28numeric2345 unique values
0 missing
y29numeric2345 unique values
0 missing
y30numeric2345 unique values
0 missing
y31numeric2345 unique values
0 missing
y32numeric2345 unique values
0 missing
y33numeric2345 unique values
0 missing
y34numeric2345 unique values
0 missing
y35numeric2345 unique values
0 missing
y36numeric2345 unique values
0 missing
y37numeric2345 unique values
0 missing
y38numeric2345 unique values
0 missing
y39numeric2345 unique values
0 missing
y40numeric2345 unique values
0 missing
y41numeric2345 unique values
0 missing
y42numeric2345 unique values
0 missing
y43numeric2345 unique values
0 missing
y44numeric2345 unique values
0 missing
y45numeric2345 unique values
0 missing
y46numeric2345 unique values
0 missing
y47numeric2345 unique values
0 missing
y48numeric2345 unique values
0 missing
y49numeric2345 unique values
0 missing
y50numeric2345 unique values
0 missing
y51numeric2345 unique values
0 missing
y52numeric2345 unique values
0 missing
y53numeric2345 unique values
0 missing
y54numeric2345 unique values
0 missing
y55numeric2345 unique values
0 missing
y56numeric2345 unique values
0 missing
y57numeric2345 unique values
0 missing
y58numeric2345 unique values
0 missing
y59numeric2345 unique values
0 missing
y60numeric2345 unique values
0 missing
y61numeric2345 unique values
0 missing
y62numeric2345 unique values
0 missing

62 properties

2345
Number of instances (rows) of the dataset.
163
Number of attributes (columns) of the dataset.
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
163
Number of numeric attributes.
0
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.07
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
10.08
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
3.08
Mean skewness among attributes of the numeric type.
-0.21
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
1.72
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
2.95
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.62
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.78
Second quartile (Median) of standard deviation of attributes of the numeric type.
290.16
Maximum kurtosis among attributes of the numeric type.
-61.34
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
2.68
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
33.91
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
100
Percentage of numeric attributes.
0.11
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.09
Minimum skewness among attributes of the numeric type.
0
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
15.43
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
5.16
Third quartile of skewness among attributes of the numeric type.
11.9
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.42
First quartile of kurtosis among attributes of the numeric type.
1.53
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
-0.33
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
24.63
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
-4.54
Mean of means among attributes of the numeric type.
0.09
First quartile of skewness among attributes of the numeric type.
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.37
First quartile of standard deviation of attributes of the numeric type.

9 tasks

0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task